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AIIS3’RACT
VIGI  1,ANI’E  IS an ultrafast smart sensor testbcd

for generic Automatic Target Recognition (ATR)
applications with a series of capability demonstration
focussed  on cruise missi le defense (CMIJ).
VIG1l.AN’1%’S  sensor/processor architecture is based
on next-generation lJV/visible/l  R semors and a tcra-
operations per second sugar-cube processor, as well
as supporting airborne vehicle. I;xcellent results of
e f f i c i en t  A’fR me thodo log i e s  t ha t  u se  an
eigenvcctorshreural net work combination and
feature-based precision tracking have been
demonstrated in the laboratory environment.

lNTRODIJCTION
The past 30 years have witnessed tt’enlendous

improvements in sensors and processors for solving
the Automatic Target Recognition (AIR)  problem
[1]. Recent advances in microprocessor and parallcl-
proccssor hardware provide hope for automated
scene interpretation that mimics human %’isllal
intelligence. Since the first 0.06 Ml PS computer-om
a-chip int roduced by lntel in 1971, today’s
microprocessors have g[-own  to contain many
millions of transistors and Clunch numbers
approaching 1000 MIPS [2]. I)cspite of these
advances, we continue to struggle with design of a
deployable system for AIR in real-time.

VJGI 1,ANTli is a new sensing/processing
architecture [11 ] comprised of the next-generation
LJV/visible/lR sensors and a high-speed, low-power
sugarcube-sized processor and offers hope of
achieving a robust, real-time AIR system in a snlaIl
package. lJsing the core computing engine
developed under the BMI)O 3-dinlensional  artificial
neuraI network (3 DANN)  program [ 12]-[1 3], 64
parallel convolution operations using LIp to a 64x64
kernel  size can be cawied out at tera-operations per
second (1012 OPS). This new processing possibility
creates a larger set of feature images from one raw
image and fuses this set of data to al-rive at the final
interpretation of the scene in real-time; this is
unthinkable in conventional digital and optical
processing medium. Excellent J esults have already
been demonstrated using a hierarchy of eigenvector
templates and 3-layer fecclforward  neural network
classifier to fuse these projections of the input scene
into 64 eigenvector components [14]. Ilxperimcnts
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with a geometrically constrained feature-based
algorithm for precision tracking also yield promising
results.

I’he sensors are the Quantum Well Infrared
Photodetector (QWIP),  the Active Pixel Sensor
(APS), and the delta-doped ultraviolet charge-
couplcd device (LJV CCD). These three sensors
covel- the wavelength ranges 8 to 9, 0.5 to 0.9 and 0.3
to 0.7 pm, respectively. VIGI1  .AN’TE’s  sensors can
be queued to assist in the AIR fhnctions  of detection,
classification, and precision tracking. For example,
LJV wavclengtbs  (0.3 to 0.7 pm) can be used for
plume dc(ec!ion,  IK (8 to 9 pm) is suitable for cold-
body sensing/ classification, and the visible
wavelengths (0.5 to 0.9 pm) can provide close-up
tracking for aim-point selection in the end-game.
Iiventually,  the VIG1 1,AN’HI  sensors maybe used for
simultaneous fusion of the data from all wavelengths.

VIGII,AN1’I; w i l l provide  a complete
nmltisensor  and processing system in a small package
that is suitable for ATR and pave the way for unique
onboard, real-time processing of sensor images for
autonomous interceptors and general-surveillance
systems. Real-time target recognition will be
demonstrated through a sel-ics of gI-o~lt~d/ail-bol-l~e
experiments using real target images.

WI IA1’S  lJNIQUE ABQ~l  VIGII.ANTE
VIGII  ANTE  approaches the target recognition

pt-oblem from a new angle with specialized
processing hardware to do the job.

Computer vision today: Classical techniques
generally s o l v e d  t h i s  p r o b l e m  b y  tewplate
ma/c//i//g[3].  Dy creating a template (or mask) of an
intensity profile that represents the target and
scanning it across the image, the region that was most
sinlilar to the previously specified template was then
declared “winner. “ ‘1’be  required scanning process for
locating the target anywhere in the scene was
computationally cumbersome, requiring as many
steps as the product of the number of pixels in the
image times the number of pixels in the template.

Optoelectronics designers have tried to speed up
the process of cross-correlation (template matching)
by using the fact that correlation can be performed in
the frequency domain by multiplying the Fourier
transforms of the target image and the template
image. In inverse Fourier tI ansform  is then performed
on the output image to locate the match. Optical
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correlators provide high-speed template matching [4],
and continuing advancements in spatial light
modulators and binary phase-only filters [5] have
made the packaging of optical correlators  much more
practical for real-time use. Ilowever, because the
target can be viewed from many angles, ranges, and
lighting conditions, generating and using a family of
templates to cover all possible distorted views of the
target is computationally intractable, even with the
optical processing alternative. lo avoid the
requirement of cycling through millions of templates
for each target, composite filter designs have been
proposed [6]. I’his  attempt to synthesize the “silver
bullet” template faces many performance and system
issues, such as signal-to-noise, discrimination ability,
programmability and limitations of available spatial
light modulators, post-processing of correlation
outputs, and packaging. All of these p~-evmt the
realization of a flexible, robust optical processor for
AIR.

Computer vision researchers have made some
progress by systematically breaking the target
recognition task into a lengthy processing-step
sequence consist ing of scene-enhancement
preprocessing, target-background segmentation,
gcon~etric/texture feature extraction, and knowlcdge-
based recognitiorl  [7]-[8].  Repeated iterations reduce
raw-pixel data into smaller sets of feature points for
interpretation involving both linear and nonlinear
filtering operations. Often, large main flame
computers and specialized supc[-compoter  systems
are needed here. Today’s specialized parallel
processor systems [9]-[10] developed for real-time
image processing are still limited to small-kernel
convolutions and can not meet the processing
demands of real-time Al’R. Defense systems have
focused on high-performance infrared, miilinwtel-
wave, and other wavelength sensors with the hopeof
simplifying AIR processing requirements by
reducing background clutter-s (in addition to being
able to’’see” throughw  eathcra  nddarkness). Finally,
assuming that simple architectures can get beyond
target detection (and perhaps classification), eventual
target recognition and aim-point selection still
demand the heavy-computation machinery that is not
suitable for deployment.

VIG1l,ANTE’S contribution: TIE
VIGII ANTE  processing architecture makes the most
of whatever imagery it is pl-escnted,  whether
monochromatic, rmrltispectral,  motionors till through
the use of an architecture modelled after the human
visual system. l’hc VI CJ1l.AN”I’11  view of image
recognition processes is to break them down into four
stages: collection of imagery, generation of synthetic
imagery, image fusion, and semantic intct-pretatiom

Figure 1 shows a simplified model of the eye-brain
system
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It could bc argued that the brain uses synthetic
imagery to analyze scenes by comparing
corresponding pixels among the various imagery
types. l’his is essentially a “rich pixel” concept,
where the brain becomes a data fltsion machine at a
pixel level before analyzing the scene in a semantic
way. Enriching pixels could be seen as a way of
improving evidencc  used in properly classifying each
pixel of theirnage.  Sitnply put, rich pixclprocessitlg
consists of the following steps:

1. Generating synthetic images that augment ralv
images with additional information

2 .  Ijusingallirnages
3. lt~tet-pretir]g  tl]efklsedit~~ages

VIGIIAN’1’E’S  philosophy, therefore, is to
create a machine whose fundamental data type is an
entire irnageplane,  rathcrtharl  nlore basic data types
sLIch as integer or floating point numbers. By
breaking down complex image recognition tasks into
a series of regular operations, VICI1l.ANTE  maps
these functions to a relatively small set of special-
purpose hardware that can implement a wide variety
of algorithms. In VIGI1,AN’1’E,  synthetic image
generation tasks (e.g. spatial filtering, motion, and
correspondence) use special-purpose hardware,
namely the 31)ANN-M  convolution device. I’ixel-
Ievcl fusion, although less regular than most image
generation tasks can be performed on regular parallel
at-chitcctures  such as SIMI)  arrays . Semantic
analysis seldom presents a significant computational
bottleneckc omparcdto  theotherfu tlctiorls. l’his task
can normally be handled with general-purpose
hardware. This mapping concept is illustrated in
Figure 2.
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VIGILA N7’E5 vicll-pixel ptwe.ssitlg

SYSTEM DESCR1P1’1ON
VIG1l,  ANTE consists of the ~iewing

~n~ager/Qinlballed jllstrl)llle~ltatioll Laboratory
(VIGII,)  ancl Analog ~eural  Xhrec-dinlensional
processing ~,xperiment  (ANTE). VIGII,  i s  an
airborne telescope serving the dual functions of data
acquisition for target recognition experiments and
testing of novel active and passive focal plane
imagers. l’he telescope will ultimately consist of a
self-contained 1 S-cm Cassegrain  unit, a gimbaled
mirror, and channels for multiband  sensors. A
schematic diagram of the VIGII.AN’1’E  system is
shown in Figure  3.
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l:igutc 3: A scbetmrtic diagtnttl ctf tbe }’IGI1,ANTE
.YJK tettl IIIGIL  is otl itltegwtcd  optical .vystett~ tht
spf it.v/ttntl.vttli t.v tbe itlccwitlg light (it ectd by a
gittlkled ttlinot]  d e t e c t e d  by t bc  respectil’e
IR/\’i.vihle/Ul’  setl,sot.v. AN7’E i.< tbc pmcessittg
.YJ1.Vt(’ttl  tb(lt .Yrlcct.v (well .Yetl.vor ebotltlel for
ptocessitlg  that is dotlc by a cottlt~lctciolfrot)le  hffet
atd best processot  atl~i carries out twl-tittle A 7’R by
ttleotls o f  spccializd,  flmtlog tleutnl  tletw’ot’ks
(.ZDANN-M) atld o poitlt opctutiotl jnocessor  (POP).

AN’I’It  is a prototype inlage-processing/target-
recognition computer architecture based upon
technology developed under the ongoing 3-
dimensional artificial neural network (31)ANN)
program. 31) ANN is a sugar-cLlbe-sized,  low-power
neuroprocessol-  with its lC stack mated to an I R
sensor array. AhTTl; uses a modified version of the
31) ANN ~-cferl-ed  to as 3DANN-M  (or commercially
known as l’eraCon).  The special modifications to
31) ANN allow VIGII ANTE  to accept data from any
sensor of arbitrary size and format. More
importantly, the 3DANN-M  cube can be used for
genera] image convolutions.

‘1’lIC general A1’R process flow is depicted in
}Jigure 2. A fl-an~e bLlffer holds the image and feeds a
colLmn or row of a 64x64 sL1bwindow to CI ,IC every
250 m. ‘1’he  31)ANN-M network then prodLlces  64
inner-products (each with two 4096 -elenlcnt vectors)
evei-y 250 m, thus accomplishing 64 convolutions of
a 256x256 image with 64x64 masks in 16 ms. l’he
64 analog values generated by 31)ANN-M arc
converted to fl-bit digital values and passed along to
the Point Opcration  Processor (POP) for data fLlsion.
Currently, the feedback memory and POP are
implemented in foLlr Adaptive SolLltions’  CNAPS
away processor boards (each board containing 128

-,
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SIMD processors and 32 megabytes of memory)
providing flexibility to program different point
operations. In the fLlture,  a cLlstonl V1.S1
implementation of POP may be designed and
fabricated. POP takes the output from the 31)ANN-
M and performs the desired target recognition
fLlnctions. Command and control of VIGIIAN’I’E
operations (e.g., detection/classification/tl-acking
mode command, loading of templates, point
operation functions, data recording, etc.) are done
though the P6 motherboard (shown as the
processor/nmmn-y block in Figure 4).

Ilecause of the ambitious scope/schedule/budget
of VIGII.AN’l’Ii,  a very lightweight helicopter (A1’I
LJltrasport  496) with a rnodifiecl seat strLtctLlre was
selected as the airborne platform, see l;igLlre 5. l’his
compact, low-maintenance, easy to transport, and fast
turnaround platform can operate both in the piloted
and [JAV mode for a purchase pt ice of $200K and an
operating cost of $8/hr.  The unmanned mode will be
employed for tests when the helicopter will be in the
“line of fire” or at high altitudes (between 12,000 and
20,000 ft). These experiments \vill demonstrate real-
time AI’R from detection through precision tracking
(aim-point selection).

I P6 Motherboard I
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Figyire 4: The VIGILA NW ptvccssi~lg  ovcllitccti(tv
that Clt’clwstt’fltl’s  t h e  dfltrl  jlow fror)l Sctl.vo)’ through

neural p r o c e s s o r  also smrs m th c hosis for
de~’clopirg nwthodologics  for A TR applicwtiom.

~AhTNED  EXPIiRIMEN’fS
A simulated CMD test scenario was selected fol-

a series of experiments planned for VIG1 1,AN’1’11
dLtring  1997-1998 period. Because of the small radat-
c~-oss section and unpredictable low altitLtdc flight
path of cruise missiles, new approaches to CM1)
other than ccmventional radar detection/tracking
should  be investigated. I’he unprecedented
processing speed of ANC1’E  processor and multiple
spectral sensing of VIGIL,  will allow detection,
classification, and tracking of targets like crLlise
missiles with great efficiency.

Flight, ground-based, and laboratory
experiments will help make VIGII.AN’l’li  available
sooner for missile defense (NM[)/’1’MIXMI))
applications. Since it is difficult to accurately
simulate spectral responses of sensors and targets
from desired vantage points, inexpensive flight
experiments will provide a realistic environment for
shakedown C)f autonomous interccptot-s and
sut-veillance  platforms.

IPigutr 5: 7hc VI GII.A N7’X; piloted/[JA V l~dicoptet
dc~doped b~’ A H is cqmMe of 12,000 ft al(itude,
llo~witg  to 98t@, 2 Ill:vfligllt titw,  ad 500 lb load.

10 addition to the A1’1  helicopter, a radio-
controllcd,  reusable target, the VIGII.AN”l’E  Target
Vehicle (V’1’V)-- a sLlb-scak  model of a Chinese
Sadsack cruise missile- serves as the crLlise  missile
target for data collection and mock tests, see Figure
6. AlthoL!gh VIGIIAN”l’E piggybacks on actLlal
cruise missile tests at NAWC,  China I.ake, the V’I’V
gives greater flexibility in terms of controlled flight
paths and test scheduling.

4
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1,en.gth 9S.5 inches (2.426 mckrs)
Diameter 9.7 inches (24.64 CI1l)

Weight 35 pounds

Figutv  6 :  TIIC VIGIL4AVE hrgct }Jebicle (VTl~- IS’
P long >titb 4  fi wirtg spotl- is a txwotcly piloted,
turbitlc  etl,gitlc Oerio[ ~’cllicfc Cqxzblr qf rcarhitlg
25,000 ft altitltde arid I 17 ttlph.

Both the helicopter and the V1’V are equipped
with GPS receivers and transmit their position
information at 10 lIz. Figure  7 depicts a typical
flight profile and associated ground communication
protocols planned for VIGI1,AN”l’E.  In September
1997, Experiment 1 (a down-looking, hovering
experiment) will fly the sensor payload of IR and
visible imagers  with a gimbalecl  mirror on an active-
isolation optical bench and use the CiPS information
to steer the girnbalcd  mirror and transmit image data
to the ground for ANTE processing. In Ikcembcr,
1997, Experiment 2 will have the pilot fly the
Experiment 1 sensor payload in a mock intercept
flight path with the VIV as the target. Onboard
sensing/processing with image-based tracking will be
demonstrated for the first time in this experiment.
Experiments 3 and 4, planned for 1998 will involve
[JAV operations of the ATI helicopter to provide
closer looks at the end-game scenario and employ the
next build of sensor/processor package, which will be
more compact and integrated to provide simultaneous
boresighted data rather than frame-dithered
information.

};igutv 7 :  }’IGI1.A  N77< f l i g h t  c.xpctittlctlt.v ~~ill
dcttmstratc the sttlart smsitlg  copobility o f
I’IGI1.ANXE itl o sitmlded CMD scctlario  )t’itb
q)iwopriotc  gt’outld cowwutlicfltiotl atd protocols for
c.yet.ittmt ttiotlitot’itig atm’ subseqmnt  data ot~oly.vis

1 ah experiments of various A1’R methodologies
also demonstrate the VIGII,AN’I’E  smart sensing
capability. We have set up a “model shop” to permit
data collection of target models in many orientations,
ranges, and illuminations, see Figure 8. Cluttered
input scenes are produced to make the scenes more
l-ealistic.

(a)

s
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(b)

Figure  8: The VIGI1.AN7E model  shop eqliippcd  with
diffetwt target modds  and nuiottmted  image data
collcctiotl .vysttvtl: (0) a setup t o  collect totget
itmgcty atld (b) example  itqwt scale.

CURRENT RFSU1.1’S
Sensors: A series of field experiments to

characterize the sensors were performed prior to
integrating VICTII,AN’fE  sensor payload into the
helicopter. 1’WO  flelcl experiments (Felmary  and
May 1997) piggy-backecI oncruise  nlissilc testingat
China I.ake wereconducted,  see Figure7.  I’hetirst
yielded visible (CCD camera) and II? (JPI. QWIP
camera) data of a tighter plane and missile. Ihc
second which has a completed setup of ~JV, visible,
MWIR, and I,WIR cameras did not provide desired
targ,et data because the cruise missile failed. A
sinlilar  test setup to observe V’1’V  is planned for

(d)

Figlivc' 9: FicldcxjJevittl etltsc>ttt})  otC/litlal .ak(':  (a)
(IV, ~lisiblc, MWIR, atd I,WIR cottlctns  otl M4S
ttloutlt, (b) obsenwtion  site at Cbitla  I,akc, (c) ~’isible
ittwgcty, ad(d) It? ittwtgety.

Rich Pixel Algorithms: Mrhile efforts to
integrate and test VIGII,ANTf; are underway,
progress continues in the development of ATR for
real-time recognition and tracking of cruise missiles
and other military targets using laboratory data.
l’hesc experiments have focused on validating the
design team’s view of processing based upon “rich-
pixel” processing, an approach which is particLllarly
well suited to architectures similar to VIGII,ANI’F.’S.

Eigenvector  based hierarchical classification:
Since conventional brute-force tenlplate  nlatching  k

usually unreliable in highly cluttered environments
(such as in Figure 10), we have investigated a
hierarchical neural-network approach based on
eigenvectors,  sec I;igure 11. FigLlre 12 andl~igure 13
show the top-level results of applying the
eigenvectors of all the objects in the target library
(300,000 images of helicopter, missile, and plane in
various ot-ientations). P1-eliminary results al-e
promising (over 90% success rates), and it appears
that, using the selected sensor/processor architecture
with the 16 msec frame rate, a robust, real-time target
~ecognitionhracking  system will be realized.

[’i,guw 10: The bnitc-fo~cc  ttwplate  ttmtchitlg >~’itfl a
tctnplatc mask o f  t he  totget  itl a sligbtl~) d[@xwt
atlgle, (lltbot [g/l pro~idc local ttmrittll[ttl
cottc.vpotlditlg t o  the target Ioclltiotl itl the
cotwlatiot[  ittt{lge, gctietntcs  o fake positilv result
>tketl seeking obsoll{te  ttmxittl ttrtl.

I’he excellent performance of the eigenvector
and neural-network combination can easily be
explained in terms of having multiple-composite
filter design options. In 31)ANN,  up to 64 composite
filters can be operated in parallel on the original
scene, each of which may address different

6
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discrinlinability/distortion-invariant  characteristics.
A neural-network classifier then fuses each flltcr
output, point-by-point, thus greatly reducing the high
dimensionalit y of nonlinear classification problems.

I’i,gl(rc 12: An example of the cigetl vector/tlettrol
tl et )t’ork ou(pl{t usitlg the to[)-lewl eigetl }wtor SC(
gctlcroted frottl all tile helicopter, wiss;le, otd plotlc
itm.gcs (300,000 totcri) itl all vorious orim  totiotl.v.

Object [.ibrary

Figure 11: Hierarchical eigctl  wctorhettm] tletbtwk-
bmed  target recogtlition sytlthesizcs  rtlulti[dc
composite filters usitlg eiget[ t’ectors gettetntefi’ frottl
the object library for 3DA NN-M processittg otd
classl~es cotwsponding Olltpl[t ~wlue Jiv’th a
.feedfommd Hcwal twtwork (which catl be dom’ itl
POP). Me h iemrcfly  is established by rcturtlitlg the
obl”ect libroty  after acll ie~’itlg clo.s.slflco tiotl to reload
clawspecl~c  eigetl vector sets.

El
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Detection Classification Orientation
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■ Missile
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13: Pct;fi)rttlotice  o f  the eiecw vectotltleural/:igot v “
tlct uwrk u.sin,g t~lc top-leld 64-cigctl\’cctor set testd
oti Iligbl) cluttered scetles (5000 sattlples).

}Iierarchical classification and tracking: The
eigenvcctm approach permits  a hierarchical
r ecogn i t i on  t e chn ique  where  a filter set is
sLlccessively retlned, permitting detailed
classification of the target. l’he approach works as
show’ nin~igl[rc  14:

2.

3.

4.

A very large set ofgeneral-pulyose  templates is
used to generate 6 4  eigcnvectors that
discriminate between potential targets and
nontargets. l’hese templates are used to separate
pixels that may contain targets from pixels that
don’t.
Generate anew set of64 eigenvectors that only
discriminate among broad classes of targets to
classify the features detectcd instep 1.
lJse increasingly restrictive template sets to
genel-ate a set of eigenvector templates that
locate the scale and orientation and more precise
classification of the target.
Pass the results from the cigenvector matcherto
the precision-tracking algorithm for p~-ecision
tracking and final identification.
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lnp.t  Image object  I taming  and tkmgnltKMl  ~u(})ut  I,,,age
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Figure 1 4 :  llietntdicfll target clm.vl~cfltiml ami
precisiotl ttnckifig

Precision tracking: By properly classifying the
target and estimating its scale/orientation to
reasonable precision, precision tracking of selected
target points can be then achieved. The algorithm
works by imposing geometric constraints on
correlation outputs of the target’s featLlre set (e.g.,
nose, wings, and tail), achieving near-zero et-l-or
t[-acking. The algorithm works via the following
steps (shown in Figure 15):

1.

2.

3.

4.

A series of images arc generated by convolving
the input image with a set of telnplates  for
detecting individual features of the object (such
as the nose, left wing, etc.) The output of this
step is a set of gray maps whose intensity
tort-esponds to the likely presence of that feature
(with a lot of false alarms). IJLtring the
convolution operation, the images are shifted
such that the featLlres would overlay ~ they wcl-e
present in the corl-ect geometry, given the
orientation and scale of the object.
I’he aligned images from Step 1 arc fused to
form a new gray map where intensi ty
tort-esponds to the likelihood of a match. ‘l’he
example shown was fLlsed using a winner-take-
all behavior on the sum across all feature images.
Neural network fusion has also been attempted.
The output image of Step 2 is multiplied pixel-
by-pixel with the shifted convolution outpLlts
from Step 1, resulting in new gray-maps for
features which have been weighted by the
likelihood that those features appear with
reasonable geomctt-y.
I’hc outtmts from step 3 are thresholdcd  a n d

1

shifted back out to their original locations.
‘fhesc feature points represent the final match.

l’he performance of the algot-ithm is shown in several
cases in F’igure 16.

Etep 1: Generate shifted convolutions
Nose ~ Wing L Wing Tall Fuse Weapons

Sep 2: Combine convolutions
via nonlinear “point processes”
to find object centmid ❑
Sep 3: Multiply centmid image by convolution
images point-by-point

❑ mmmmm
Etep 4: 9tift and threshold
pointsfmm siep  3 by the
reverse amount of shift in
step 1, the= are the
feature points

Figure 1 5 :  Precisiotl ttmkitg olgorithttl ~~otk by
cottt hitl itlg el’idett w, j)oitlt-tt~’-po  itlt, .fiottl sh!fled
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Test image of
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CONC1>IJSIONS
VIGII,AN1’E  will provide an

sensor testbed and demonstrate
ultrafast smart
an end-to-end

detection/recognition/tracking in real-time through a
series of flight experiments. l) Lwing 1996-97,
excellent progress has been made in
design/developn~  ent of system architecture, airborne
platform and target vehicles, ATR methodologies,
and field data collection. More results are anticipated
in 1997-98 when the VIGII,AN”l’E  payload will be
integrated and its real-tinle/onboard smart sensing
capability demonstrated in a simulated CMI)
scenario. VIGI1  .AN’I’E  is a fast-pace, low-cost
program providing technological breakthroughs to
serve NM1) and lMD needs.
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