iccd-97.himl e
cerc.utexas.edu/icc SRS
. Program ::i i

. L B

rence on Computer Design

er 12-15, 1997 _
Regency Hotel, Austin, Texas

Sponsc. . JAIESs Circuits and Systems Society IF-EE

PN RGN Computer Society C(S)(h%f%:rrgR o

1L remittee on Design Automation 4

: 12
TX < tion wib-|FEE_Electronic Devices Society

. _ ‘"1gpects of
pfnational Conference on Computer Design coversall @ --.-a-wa




A LOW POWER SMART VisioNn SYsTEM BASED oN ACTIVE PIXEL SENSOR INTEGRATED
WITH PROGRAMMABLE NEURAL PROCESSOR

Wai-Chi Fang, Guang Yang, Bedabrata Pain, Bing J. Sheu *

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA

* Department of Electrical Engineering, University of Southern California
Los Angeles, CA 90089-0271, USA

Abstract

A low power smart vision system based on alarge format (currently 1Kx1K) active pixel sensor (APS)
integrated with a programmable neural processor for fast vision applications is presented. The concept of building
alow power smart vision system is demonstrated by a system design which is composed with an APS sensor, a
smart image window handler, and a neural processor. The paper also shows that it is feasible to put the whole
smart vision system into a single chip in a standard CMOS technology.

This smart vision system on-a-chip ean take the combined advantages of the optics and electronics to
achieve ultra-high-speed smart sensory information processing and analysis at the focal plane . The proposed
system will enable many applications including robotics and machine vision, guidance and navigation, automotive
applications, and consumer electronics. Future applications willalso include scientific sensors such as those
suitable for highly integrated imaging systems used in NASA deep space and planetary spacecraft.

1. Smart Vision System based on APS | ntegrated with Neural Processor

Figure 1 shows a system diagram of the proposed smart vision system. The functional blocks include: (a)
an active pixel sensor. (b) a smart image window handler. (¢) a programmable neural processor, and (d) a host
interface and timing control card. The APS is used as the optical sensing array in the system. The APS image data
is manipulated by the smart window handler to provide the input of neural processor. The neural processor is
programmed to perform various vision tasks in high speed duc to its massively parallel computing structures and
learning capabilities. The APS sensor, the smart image window handler, and the programmable neural processor
are controlled by a host computer through host interface and timing control card. The output image or vision
science data will be displayed by the host computer.

It is feasible to build the proposed smart vision system in a single CMOS chip. This smart vision system
on-a-chip can take the combined advantages of the optics and electronics to achieve low-power high-speed smart
sensory information processing and analysis at the focal plane.  The proposed system will enable many
applications including robotics and machine vision, guidance and navigation, automotive applications, and
consumer electronics. Future applications will also include scientific sensors such as those suitable for highly
integrated imaging systems used in NASA deep space and planctary spacecraft.

The following sections describe technical details of each building block of the proposed smart vision
system and also show the feasibility to put the whole system into a single chip in a standard low power CMOS
technology.

2. Low Power CMOS Active Pixel Sensor

The low power CMOS APS camera-on-a-chip has been invented by Advanced Imager and Focal Plane
Technology group at JPL [1]. APS camera-on-a-chip has great importance for producing imaging systems that
can be manufactured with low cost, low power, and with excellent imaging quality.

Charge-coupled devices (CCDs) are currently the competing technology for image sensors. However.
CCDS cannot be easily integrated with CMOS without additional fabrication complexity. In addition, CCDS



require two-order-of-magnitude higher power dissipation than that of APS. The CCD does not have the
windowing capability to provide the input data to the neural processor. On the other hand, an APS imager does
not have the above limitations and it is the suitable candidate for the proposed smart vision system.

The 1Kx1K APS is used as the optical sensing array and integrated with the neural processor to build the
smart vision system for high definition vision applications. A low power 1Kx1K CMOS APS (operate from a
+3.3 V supply) using 0.55 um n-well process was designed and characterized at JPL. Testing results show that the
large format APS with small feature size (10 micron pixel pitch) is capable of excellent imaging performance.

The schematic design of the APS chip’s signal chain (for the photogate approach) is shown in Figure 2.
It performs correlated double sampling (CDS) to suppress pixel fixed pattern noise, and double delta sampling
(DDS) to suppress column dependent fixed pattern noise. It has two separate readout signal chains one analog and
the other digital. The digital readout signal chain consists of a 1024 column parallel 10-bit single slope ADCs
with built-in CDS.

A block diagram of the 1Kx1K APS chip architecture is shown in Figure 3. It contains a 1024x1024
photodiode or photogate pixel array and 1024 parallel 10-bit singles-dlope ADC. The 10-bit decoders are
controlled by input clocks to supply the row address and column address for analog or digital mode operation of
the chip. The analog outputs are VS _OUT (signal) and VR_OUT (reset), and the digital outputs are D_out0 to
D_out9. The analog and digital readout chains are separated by the pixel array. Each imager can be operated in
analog or digital readout mode. Layout of the IKx1K CMOS APS with on-chip ADC is shown in Fig. 4.

Testing results measured through the analog signal chain are summarized in Table 1. Figure 5 shows a
full 1IKx1K image from the APS sensor operated in analog mode.

Table 1. Summary f testing results measured through the analog signal chain
Parameters Photodiode APS Photogate APS
Saturation Level 655 mv 570 mV
(307,000 &) (41,000 &)
Conversion Gain 2.1 mVie- 13.9 mvtc-
Linearity 99. 9%@ 90% Of Saturation 99.6% @90% of Saturation
Peak QE 4 5000 1870
Fixed Pattern Noise 0.6% Sat p-p 0.6 % Sat p-p
(@ 22.3"C and159 mscc (@ 22.5"C and 39.2 msec
integration time) integration time)
Dark Current 14.9 mV/Sec 371 mV/Sec
Power Consumption @ 833 kHy, Pixel Tale @ B33 kHz PixelTae
Digital: 5.77 mw Digital: 52.8 mW
Analog: 14.2 mW Analog: 22.3 mW
Total: 20 mW Total: 75 mW
@83.3kHz Pixel Rate @83.3kHz Pixel Rate
Digital: 2.31 mW Digital: 48.7mwW
Analog: 6.86 mW Analog: 18.2 mW
Total: 9.17 mW Total: 66.8 mW
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3. Smart | mage Window Handler

The APS images described in the previous section arc capable of providing mxm sub-window’ image data
to neural processor. However. the neural processor reguires the input data in the format of mxm sub-window’
which shift in x rows and y columns basis through the whole image. where x and vy are integer ranged from O to n-
1. Thus, (n-m+x(n-m + J) sub-windows per frame are required for anxn APS with awindow shiftingin 1 row
and 1 column basis. In this case. the frame time of the APS chip as well as the system will be much longer than
the frame time that the APS chip is running in the row by row output mode This difficulty ean be solved by the



smart image window handler. The smart image window handler is designed for the interface between the APS
chip and neural processor to achieve a fast frame time.

4. Neural processor

A programmable neural processor based on optimization cellular neural network (OCNN) which has been
jointly invented by JPL and USC [2]. It can be used as a front-end sensory information processor to provide high
throughput real-time computing power at neighborhood of the sensory circuit. The OCNN neural processor is
programmable and able to perform various vision functions at very high speed in VLSI. Moreover, the OCNN
architecture is a locally connected, massively paralleled computing system with simple synaptic operators so that
it is very suitable for VLS| implementation. A compact VLSI OCNN neural processor is able to provide a
powerful computing engine for the smart vision system. Both high data bandwidth and high performance
computation are required for various vision functions. Incorporating the OCNN neural processor into the proposed
vision system offers orders-of-magnitude computing performance enhancements for on-board real-time vision
tasks.

The OCNN proposed for the vision system is an improved version of the original Cellular Neural Networks
(CNN). Since its origina publication by Chua and Yang [3,4] in 1988, the CNN paradigm has evolved rapidly
and provides an unified framework for many computation-intensive applications such as signal processing and
optimization, The CNN has been proved to be universa as the Turing machine [5]. As shown in Figure 7, the
OCNN is a multi-dimensiona array of mainly identical cells which are dynamic systems with continuous state
variables and locally connected with their local cells within a finite radius. Figure 8 shows the model of the
OCNN neuron C(i,j). Many OCNN functions have been verified via system simulation These functions include
noise filtering, isolated pixel elimination, hole filling, morphological operations, image enhancement, edge
detection, connected component detection, feature extraction, motion detection, motion estimation, motion
compensation, object counting, size estimation, path tracking, collision avoidance. minimal and maximal
detection, etc. The operation for different applications depends primarily on the coefficients of the templates
and the procedure to apply them A template includes the information for synapse weights, threshold values, and
boundary conditions.

Since the OCNN design is targeted for smart vision system, it has four more significant features than the
basic CNN:

() Optimal Solutions of Energy Function:

Under the mild conditions [3]. a CNN autonomously finds a stable solution for which the Lyapunov function of
the network is locally minimized. To improve the local minimized energy function of the basic CNN, the
annealing capability is included to accommodate the applications in which the optimal solutions of energy
function are needed, Hardware annealing [6] is a highly efficient method of finding optimal solutions for cellular
neural networks.

@) Multiple Layers with Embedded Maximum Evolution Functions:

Inthe original CNN every pixel is represented by one neuron. In the OCNN every pixel can be represented by
multiple neurons which form a hyperneuron and execute the maximum evolution function for various profile
selections or the multi-sensor data synergy.

(© Digitally Programmable Synapse M ‘eights:
To improve the fixed synapse weights of the basic CNN. the digitally programmable synapse weights are
designed for the OCNN to accommodate the applications which require programmable pre-determined operators.
(D) High-speed Parallel External Image 1/O:
To improve the data I/O bandwidth of the basic CNN, a 2-D array of optical receivers and transmitters is
integrated with the OCNN to accommodate the applications which require high-speed parallel image /0 [7].

The OCNN can be used as a front-end sensory information processor with the APS to provide high

throughput real-time computing power at neighborhood of the sensory circuit. The OCNN operation theory,
architecture, design and implementation, prototype chip. and system applications have been investigated in detail
and presented in the references [2.8].
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5. Conclusion

Demonstration of the concept of the smart vision system based on APS integrated with programmable
neural processor gives the feasibility of design the proposed system on a chip. This highly integrated and ultra-
high-speed information processing smart vision system on-a-chip can be used on various NASA scientific missions
and other industrial or commercial vision applications.
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5. Conclusion

Demonstration of the concept of the smart vision system based on APS integrated with programmable
neural processor gives the feasibility of design the proposed system on a chip. This highly integrated and uitra-
high-speed information processing smart vision system on-a-chip can be used on various NASA scientific
missions and other industrial or commercial vision applications.
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