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Abstract
[ [

The definition of conditional probabilities is based upon the existence of a joint

A

probability. However, a reconstruction of the joint probability from given conditional
probabilities imposes certain constraints upon the latter, so that if several condit.iomd
probabilities are chosen arbitrarily, the corresponding joint probability may not exist, Such
an incompleteness in conditional probabilities can be eliminated by introducing complex
probabilities.

Physical meaning of the new mathematical formalism, as well as its relation to
quantum probabilities, is discussed.

One of the oldest and still

processes is to reconstruct a

unsolved problems in the field of rnultivariate  stochastic

joint probability from several correlated conditional

probabilities. This problem has been discussed in [1] - [3]. Its origin is in the fact that

classical probability theory defines conditional probabilities based upon the existence of a

joint probability. At the same time, one can observe correlated stochastic processes which

are represented by conditional probabilities. And then the inverse problem of

reconstructing the underlying joint probability arises.

As an illustration to this point, consider two coupled diffusion equations:

a2p, (x, ,X2) ~P2 (xl JX2 ) = ~ (x, ) ~2d~l ‘Zf3p1(x,,x*) =D,(X2) ~x2 ,- ~[ 2 &’ )
(2 1 2

with the initial conditions:

p,(x,>t’lx~>t’)  = 6(X, - x:), i = 1 , 2

The solution for t > t’ reads:

(1)

(2)



(3)

(4)

Obviously, p, and p 2 are interpreted as the density of xl given Xz and the density of

XZ given x,, respectively, i.e., they represent conditional probabilities:

P1=.fl(41X2 )> P2 = f2(x21% ) (5)

As will be shown below, a joint probability for (3) and (4) exists only for special choices
of the diffusion coefficients D, (X2) and D2 (xl) when the conditional probabilities are

compatible. In order to obtain the compatibility equation, start with the joint probability
@(x1,, x2) and recall that

@(X, ,X2)=f,  (X,1X2) j@(Z,X2)dZ=f2(X21X,)  jh(X,, Z) dz
—e., -m

whence

p(w)dz
L(4X2) = -m

fZ(xZlxI) jo(z,x,)dz

i.e.

~n J] (4X2) = -h~@(X1,  Z) dz –In j@(z,x2)dz
$2(%1% ) -- -cm

(6)

(7)

(8)

and therefore
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J2
]n AM%) ~~

ax,dx2 f2 (X21X1)
(9)

Thus the existence of the joint probability density @(xl ,X2) requires that the conditional

probability densities must satisfy the compatibility equation (9). But it is easily verifiable

that the solutions (3) and (4) do not satisfy this equation, i.e., they are incompatible:

if

(lo)

D} (X2) and D2 (xl) are chosen arbitrarily.

At the same time, there is nothing wrong with these solutions since they describe

two stochastic processes which can be observed and even implemented by dynamical

simulations, [4,5]. Hence, the only conclusion which can be made is that the joint

probability in this particular case does not exist! But how “particular” is this case? Based

upon the degree of arbitrariness to which the diffusion coefficients can be assigned, it is

obvious that the incompatibility of the conditional probabilities is a rule rather than an

exception. In other words, there is a class of coupled stochastic processes for which joint

probability does not exist, and therefore, they are inseparable, i.e., there is no such

transformation of variables which would break them down into independent components.

As known from classical mechanics, the incompatibility conditions are usually

associated with a fundamentally new concept or a physical phenomenon. For instance,

incompatibility of velocities in fluid

(11)

introduces vorticity and rotational flows, and incompatibility of strains describes continua

with dislocations, [6].
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In this context one may ask what is a “hidden” physical effect behind the

incompatibility (10)? Maybe this incompatibility can be eliminated in the class of complex

functions?

Following the formalism of quantum probabilities, let us introduce a complex joint

density “amplitude”:

f(x,,x2)=  a(~,,x2)+~~(x1tx2) (12)

Then the marginal density “amplitudes” are:

.fl(xl)= J44jx2)~2+i J~(x1jx2)~2=~1(x,)+i~,(x,)
—cm -c.!

f2(x2)= Jd%x2)4+i  J~(xl>x2}~l=~2(x2)+i~2(x2)
-cm -m

(13)

(14)

where

Q1(4)= p(w2)~2@2 (X2)=  p(%x2)4
-m —cd

(15)
.

b,(xl)=  Jb(x1,x2)dx2, b2(x2)= jb(x,,x2)&1
- - —M

Following the fommlism for conditional prc}babilities,  the conditional density “amplitudes”

will be defined as:

f  (%X2) = ) m22 + b b2 + i a2b - ab2a(xl ,X2)+ ib(xl >xz_ =
f1,2  =

f2(d a2 (X2)+ ib2 (X2 ) a; +b~ al + b;

(16)

f2,, =
f  (%J2) = “ )a(xl, x2) + ib(xl, ~2 aal + bbl + i alb – ab,

f, (X,) al (x l)+  ibl (XL ) – = af+bf at + b:
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Now we have to depart from the quantum formalism and define the physical probability

density as a real part of the “amplitude” in Eqs. (13)-(1 3) requiring that

This condition can be enforced by introducing a normalizing multiplier in (12) which will

not effect the conditional probabilities (16).

Now our original problem can be reformulated in the foillowing manner: given two

correlated stochastic processes (for instance, (3) and (4)); considering them as red parts of

(unknown) complex density amplitudes (16), find the corresponding complex joint density

amplitude (12), and therefore, all the marginals  (13) and (14), as well as the imaginary

parts of conditional density “amplitudes,”

In this case one arraives  at two coupled integral equations titi resp@ to ~(xl, x2 )

and b(xi ,x2 )’

aa2 + bb2 aal + bbl
P,(JV2)= --> P2(%%)= ,

aj -t bj al i-b;
(18)

This system is nonlinear, and very little is known about general properties of its solution.

However, cases when a solution does not exist are exceptions rather than a rule. Indeed,

discretizing  the functions in (18) and replacing the integrals by the corresponding sums (see

Eqs. (15)), one reduces (18) to a system of n algebraic equations (with quadratic

nonlinearities) with respect to n unknowns. This means that for any arbitrarily chosen

conditional densities

PI (% J2)= Refl/2 (xl JX2 )! P2 (%J2 ) = Re f2/1 (V2 ) (19)

the system (18) defines two corresponding functions a(xl ,X2
) and b(x1,x2) which forma

complex joint density “amplitude” (12).



At this point we are ready to formulate the main difference between the complex

probabilities introduced above, and those in quantum mechanics: here the imaginary

components are defined by incompatibilities (in a sense of Eq. (10)) between correlated

stochastic processes, while quantum probabilities are postulated in complex form to explain

the wave properties of particles observed in experiments.

Turning to Eq. (16) let us derive the complex version of the Bayes’ rule:

Re~llz  Re ~z – Im~llz Im~z = Re~zli  Re~, – Im~Zl, Imf’1

Re~112 Im f2 + Ref2 lmfl12 = Re f, lmf2[, + Ref21, Imfl

(20)

(21)

whence:

Re~112 =
(Ref21,Ref,  -lmf,l,lmf,)Ref, -(Ref,lmf,l,+Ref21,1mfi)Imf2 (22,

R e2 
f2 -- Im2 f2

(Ref,Imf21, ) ( )+ R e  f211 Imfl Re f2 +- Ref21,  Refl – Imf211  Imfl Imf2
Imf,12 =

R e2 
f 2 – I m2 f 2 (23)

Thus, Eq. (23) (24) expresses the real and imaginay  parts of the conditional density
“amplitude” f112 via the real and imaginary  parts of the conditional and marginaI  density

“amplitudes” f21, f,, and f2. Here the departure from classical case is proportional to the

degree of incompatibility (10) between the conditional densities Re f112 and Re f21L.

It should be emphasized that for incompatible conditional processes the classical

version of the Bayes’ rule does not exist.

-.. .
Since the

“amplitude” (but

physical meaning of probability is assigned to the real part oi

not to the square of its module as in quantum mechanics),
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interference between different probabilistic branches of a stochastic process. This property

allows one to simulate a complex version of the Fokker-Planck  equation. Indeed, suppose

that the components a and b of the complex joint density amplitude (12) satisfy the

conditions which are sufficient for their representations as solutions to the corresponding

Fokker-Planck equations, and, for the purpose of illustration, choose these equations in the

following simple form:

(24)

Then, the complex “amplitude” (12) satisfies a complex version of the Fokker-Planck

equation:

()@_D d’f+~’f ,f=a+ib——
z - dx: ax;

Assuming that

a= 6(x1,&,x, t),~=~(x,,??,,x,,rj,) at ?=0

(25)

(26)

where 3 is the Dirac function,’ one can verify that the corresponding incompatible

stochastic processes from which the complex joint density “amplitude” (25) was derived,

have the following conditional densities:

[ 1[(% -m’+ 2(X2 - &)2 +exp _ (% - n)’++, -:%J2exp –—
4Dt 4Dt

f,,, = 1
FF=:~+exp-2(fi~N ‘-- ’27)
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,Dt .]+.xp[-,(~-~;;(x~  ,28,2(X, -q)’ +(X2 -$2)2
exp –

f =211

{[

-%  - ~1 )2  + ~xp -%  –  VI )2

4xDt exp——
4Dt 4 D t 1

Hence, a solution to the complex Fokker-Pkinck  equation (26) subject to the initial
conditions (27) can be simulated by two correlated (but incompatible) stochastic processes
whose conditional densities are expressed by Eqs. (27) and (28).

In order to demonstrate a physical meaningfidmxs of the new mathematical
formalism define a joint entropy for two incompatible stochastic processes (27) and (28)

as follows:

H=-1-JJ(a in a +ibtkb)dxl@ - “
-“ (29)

()where a X1,X2 and b(xlxz ) am the components of the corresponding complex joint

probability f defined by Eqs. (24) and (25).

We will show now that the entropy (29) represents a Lyapunov function for the
evolution of the compIex joint probability (25).

Indeed, denoting

. .

Hj=-JJ a!na dxidx2, H2 =-JJb h b &@2
-* -“

one finds:

8
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since H1 and H2 are the Lyapunov functions for the solutions to Eqs. (24), respectively,

which approach their maximum values at t –> 00.

Therefore, the entropy (29) will apprc)ach its maxirnm value at t -+00 as a result of

joint evolution of Eqs. (24), or of the evolution of their complex version (25).

It is important to emphasize that the entropy (29) consists of two components (see

Eqs. (29) and (30)):

r“H=lH1+iH21=  H:+H; 2 H, (32)

Where HI and H2 are defined by the real and imaginary parts of the joint probability

~ = a + ib, respectively. But the imaginary part b is proportional to the degree of

incompatibility of the underlying correlated stochastic processes (27) and (28). Combining

this result with the inequaaality  in (32), one concludes, that incompatibility increases the

entropy (and therefore, the information) of correlated stochastic processes.

Let us illustrate the situation described above by the following example. Consider a

sensor data for the sea surface temperature T and the wind strength v taken at the same

point, Theoretically these data must be deterministic since they are solutions to the

corresponding Navier-Stokes equations coupled with the equations of heat transfer.

However, because of instability of these equations at super critical Reynolds numbers,

actually the sensor data are random, and each time series can be treated as a sample of some

underlying stochastic process. The Langevin-type  representation of this process is very

complex, and we will present it here in a symbolic form.

it CZ(V,T) = r,(m,t), T + P(T, V) = r2(T, ILt) (33)

The first equation in (33) symbolizes the group of the Navier-Stokes equations written in

the Reynolds form (prior to averaging) so that the Langevin-type  force 1’1 is represented by

temperature-velocity fluctuations. The noise strength of this force can be expressed via the

corresponding Reynolds stresses. As shown in ’71 , these stresses are proportional to the

degree of instability of the original deterministic model.
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The second equation in (33) stands for the group of heat transfer equation presented

in a similar form.

Since Eqs. (33) are coupled, the conditions of their instability are coupled as well,

and therefore, the Langevin-type  forces r, and r2 in general, must depend upon both

the variables v and T.

The corresponding symbolic Fokker-Planck  equations will look as following:

(34)

(35)

Here ~U/~ and f T/V are the conditional probabilities of v(given  T) and T(given v),

respectively; R“ and Rr stand for the Reynolds stresses due to velocity and temperature

fluctuations, while, (again, symbolically):

<r, (t)r,(t’) > = Rud(t – t’)

< r2 (~)r2 (t’) > = R, ~(t – t’)

(36)

Although, in general, the probability evolution for Eqs. (33), is more sophisticated than

those described by Eqs. (34) and (35), by introducing these equations we would like to

emphasize here that it is nothing abnormal in the fact that the diffusion coefficients
R“ and R~ depend upon both variables.

Let us proceed with our example. Since the closed form solution to stochastic

model of evolution for v and T cannot be obtained, we will assume that a family of

v – time series at different T and a family of T-time series at different v are available.
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Then one can represent these data (one way or another) in terms of probabilities. For

simplicity, we will assume that they are expressed by Eqs. (27) and (28), where
‘v =x, a n d  T= x2.

Then in order to develop a data-based stochastic model of the velocity-temperature

evolution, one has to understand joint properties of these processes, and that is why a

reconstruction of the joint probability is important. However, the processes (27) and (28)

are incompatible (which can be verifkxl by substitution in (10), and therefore, the joint

probability should be sought in a complex form following from the system (18) with
respect to a and b where pl = plk, and p2 =: pdl are given by Eqs. (27) and (28).

In our case, a and b are presented in the form (3) and (4) respectively (after
replacements D, = Dz = D) as solutions to the diffusion equations (24) subject to initial

conditions (26). (For the purpose of i[lustmtion,  we actually solved the inverse problem

starting with Eqs. (24) and deriving Eqs. (27),(28)).

Thus the complex joint probability

f=a(v,7’)+ib(v,T) (37)

found from sensor data can be exploited for studying two-dimensional evolution of T and

v in the most general case.

This example describes incompatible stochastic processes appeared in nature A

“man-made” processes of the same type are discussed in ‘G] .

Generalization of the complex probability formalism introduced above to more than

two variables has some restrictions: a complex joint density “amplitude” can be guaranteed

for each pair of the conditional densities which are chosen from a set of all the conditional

densities. However, the existence of joint density “amplitude” for more than two

conditional densities imposes upon the latter the compatibility conditions similar to (1 O)

even in the class of complex functions.

In conclusion, we will briefly summarize the results.
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First] y, it has been identifki  a special class of incompatible stochastic processes

which are coupled in such a way that their joint properties cannot be expressed by classical

formalism. This new level of dynamical entanglement has been described by complex

density “amplitudes.”

Secondly, it has been demonstrated that incompatible stochastic processes can

simulate new dynamical phenomena such as those described b y a complex Fokker-Planck

equation. This new property enhances the capabilities of dynamicaJ simulations for the

purpose of information processing and computing, as well as for better modelling  and

identification of complex dynamical behaviors,
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