ON THE USE OF ROBOTICS FORMALISM IN THE DESCRIPTION AND MODELING OF ANTENNA RANGE POSITIONERS

R. J. Pogorzelski and R. J. Beckon
Mail Stop 138-307
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109-8099

A typical positioner used for positioning an antenna under test on an antenna range has two or three rotation axes arranged in such a manner as to facilitate the taking of data along certain paths through the antenna pattern (pattern cuts). It will usually have one horizontal rotation axis (the elevation axis), a vertical axis (the azimuth axis), and possibly an additional axis sometimes called the roll axis which is oriented by the other two. In the most straightforward of measurement sequences, all but one of the axes are fixed and the desired axis is rotated over a prescribed range of angles during which data samples of the received signal are taken. The transmit antenna illuminates the antenna under test from a location in the far zone resulting in a plane wave at the positioner. As measurement sequences become more complex, perhaps requiring simultaneous motion of several axes, two needs arise. First, given the desired angular trajectory, one must determine the necessary axis rotations to achieve it. Second, if phase data is to be properly interpreted, one must obtain, for the particular trajectory used, the transmitting antenna / receiving antenna distance for each data sample. These needs can be conveniently met by means of the existing formalism developed for description and control of the behavior of industrial robots. [See, for example, J. J. Craig, Introduction to Robotics, Addison-Wesley, Reading, MA, 1986]

To properly describe the behavior of a given positioner, one must first identify the parameters of the positioner model. We have done this by performing a set of diagnostic phase measurements which effectively measure the transmitting antenna / receiving antenna distance and optimizing the fit between these data and corresponding data generated by a simulated positioner. The fit is optimized by adjusting the geometrical parameters in the positioner model such as the angles between the various rotation axes. Once this parameter identification has been successfully accomplished, the positioner model can be used to prescribe the necessary axis rotations to achieve a desired trajectory and to determine the transmitter / receiver distance for each data point. In fact, even if the positioner is damaged or improperly constructed so as to render, for example, the angle between two ostensibly orthogonal axes significantly different from ninety degrees, robotic modeling can be used to determine the rotations necessary to compensate for the positioner shortcomings and achieve the desired trajectory. In this paper we describe our experiences with this application of robotics.

Papers on any topic of interest to a commission are welcome. In particular, papers on the special topics listed below are solicited. Contact the commission chairperson for further information.

COMMISSION A, Electromagnetic Metrology
Ch.: John D. Norgard, (719) 262-3548
FAX (719) 262-3589
EMAIL j.norgard@ieee.org

Microwave to submillimeter measurements/standards
Quantum metrology and fundamental concepts
Time and frequency
Time domain metrology
EMC and EM pollution
Noise
Materials
Bioeffects and medical applications
Antenna
EM-field metrology
Impulse radar
Planar structures and microstrip circuits
Interconnect and packaging
Ultra-wideband electromagnet (with B, C)
Wireless communications (with B, C)
Advanced materials for EM applications (with B)
Transient fields, effects, and systems (with B, C)
Wireless devices and systems (with B, C)

COMMISSION B, Fields and Waves
Ch.: Donald R. Wilton, (713) 743-4442
FAX (713) 743-4444
EMAIL wilton@uh.edu

Antennas
Arrays
Complex media effects
Guided waves
High frequency techniques
Interaction and coupling
Inverse scattering
Microstrip devices and antennas
Numerical methods (differential equations)
Numerical methods (integral equations)
Numerical techniques (other)
Rough surfaces and random media
Scattering
Theoretical electromagnetic
Transient fields, effects, and systems (with A, C)
Wireless devices and systems (with A, C)
Ultra-wideband electromagnetic (with A, C)
Wireless communications (with A, C)
Advanced materials for EM applications (with A)
Personal, mobile, and cellular communication systems (with C)

COMMISSION C, Signals and Systems
Ch.: David Thomson, (908) 582-6877
FAX (908) 582-2379
EMAIL djt@research.bell-labs.com

Adaptive beamforming and multisensory arrays
Signal processing for array feeds
Wavelets, time-frequency analysis, and modal decomposition
Signal processing for remote sensing and weather profiling radar
Spectrum analysis and inverse theory: Detection and estimation
Personal, mobile, and cellular communication systems (with B)
Ultra-wideband electromagnetic (with A, B)
Wireless communications (with A, B)
Transient fields, effects, and systems (with A, B)
Wireless devices and systems (with A, B)
COMMISSION 0, Electronics and Photonics
Ch: Robert Mattauch, (804) 828-0190
FAX (804) 828-4269
EMAIL rjmaffau@saturn.vcu.edu

- Optoelectronic techniques, devices, and materials
- Cryogenic electronic devices and circuits
- Optical transmission and interconnection
- Microwave millimeter wave and submillimeter wave devices & clds.
- High speed devices and circuits
- Mesoscale devices and associated materials
- Vacuum microelectronics

COMMISSION E, Electromagnetic Noise and Interference
Ch: David J. Cohen, (301) 985-4616
FAX (301) 985-4611
EMAIL dcohen@ucsfsl.umd.edu

- Natural and man-made noise
- Communication in the presence of noise
- High-power electromagnetic
- Effects of transients on electronic systems
- EM noise-model development/validation
- Spectrum management and utilization
- Statistical electromagnetics
- Techniques for RFI monitoring, exclusion, and removal (with J)

COMMISSION F, Wave Propagation and Remote Sensing
Ch: Wolfhard Vogel, (512) 471-8608
FAX (512) 471-8609
EMAIL wolf_vogel@mail.utexas.edu

- Radar measurements of precipitation
- Remote sensing of the oceans
- Remote sensing of the atmosphere
- Remote sensing of land, ice, and vegetation
- Terrestrial Propagation Effects (Models and Measurements)
- Satellite-Earth Propagation (Models and Measurements)
- Indoor Propagation (Models and Measurements)
- Mobile Propagation (Models and Measurements)

COMMISSION G, Ionospheric Radio and Propagation
Ch: Lewis Duncan
Please contact: Vice Ch: John C. Foster, (617) 981-5621
FAX (617) 981-5766
EMAIL jcf@hydra.haystack.edu

- Ionospheric Effects on Radio Propagation and Telecommunication
- Ionospheric Tomography
- Low & Mid-Latitude Radio Studies of the Ionosphere
- Ionospheric Models and Modeling
- Radar Investigations & High-Latitude Studies
- Civilian Uses of GPS (with H)
- HF Ionospheric Modification Research (with H)
- Sprites & Ionospheric Effects of Lightning (with H)
- Radar Techniques Workshop (All day, Friday, Jan. 9)

The Radar Techniques Workshop will focus on technical aspects of ionospheric diagnostics using radar and radiowave techniques. The Workshop is meant to be a forum for the discussion of recent developments affecting the use and capabilities of radar instruments and facilities. Participation by the user community (especially students using these facilities) is encouraged. Emphasis will be placed on incoherent scatter radar and on recent developments pertaining to its use. Related topics cleating with HF or MF radars and digital ionosondes will be considered appropriate. Scientific papers based on radar data should be submitted for presentation in the regular URSI sessions.

COMMISSION H, Waves in Plasma
Ch: Umran Inan, (415) 723-4994
FAX (415) 723-9251
EMAIL inan@nova.stanford.edu

- Waves in the outer magnetosphere and magnetosheath
- Laboratory simulations of space plasmas
- Wave interjection from space
- Intermediate ionospheric layers
- Mid-latitude turbulent upwellings
- Red sprites, blue jets, and lightning
- Ionospheric modification experiments
- Remote sensing with artificial and natural ELF waves
- Civilian Uses of GPS (with G)
- HF Ionospheric Modification Research (with G)
- Sprites & Ionospheric Effects of Lightning (with G)

COMMISSION J, Radio Astronomy
Ch: Donald Backer, (510) 642-5128
FAX (510) 642-3411
EMAIL dbacker@astro.berkeley.edu

- Probing the Origins of Planetary Systems
- Microwave Photonics in Radio Astronomy
- VLBI Astrometry and Geodesy : Into the New Millennium
- Radio Science in the Classroom
- GHz-Bandwidth Spectrometers & Spectrometers for Multibeam Instruments
- Techniques for RFI monitoring, exclusion, and removal (with E)
COMMISSION K, Electromagnetics in Biology and Medicine
Ch: James C. Lin, (312) 413-1052
FAX (312) 413-0024
EMAIL lin@eecs.uic.edu

All abstracts must be received by:
September 19, 1997

Abstracts should be mailed to:
Ms. Julie McKie
CIRES
University of Colorado at Boulder
Campus Box 216
Boulder, CO 80309-0216

Questions should be directed to:
FAX (303) 492-1149
E-MAIL: info@ursi.cires.colorado.edu

Dr. Denise Thorsen (303-492-4290) or
Rod Frelich (303-492-6776).

Submission of Abstracts by E-mail
Abstracts in LaTeX format only may be submitted by electronic mail. Special style and template files must be used, and are available by anonymous ftp at: tires.colonxfo.edu -pub/urai1998 along with a file containing instructions on their use. E-mail submissions should be made to: ursi@ci res.colorado.edu. Authors will be notified promptly if the abstract cannot be handled by e-mail, and asked to submit the abstract in hard copy instead.

See back cover for explicit instructions that must be followed in the preparation of abstracts. Abstract submission form must be included or paper will not be considered.

URSI ABSTRACT SUBMISSION FORM
National Radio Science Meeting, January 1998

Fill in this form and return with your formatted (camera-ready copy) abstract, or include with e-mail submission.

Name of presenter ________________________________
Address __
__

Have you submitted other papers for presentation at this conference? ☐ Yes ☐ No
Telephone __________________________ FAX __________________________
E-mail address __

Note: All correspondence, including program information, will be sent only to the mailing address of the presenter. Co-authors and others who wish to receive a copy of the advance program should send a specific request with this form.

Title of Abstract __

Suggested URSI Commission Topic __________________________

If this is an invited talk, please provide the name of the person who gave the invitation. __________________________

FINAL DEADLINE FOR ABSTRACTS: September 19, 1997

ATTENTION: No changes will be made to the Advance Program or Book of Abstracts after the Program Committee Meeting.