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Introduction , (J
Lue
Optimization is an integral aspectof mission plauning. In recent years, the drive. for faster,
more propellant-efficient missions has ﬁﬁ to an increased interest in Jow-thrust
propulsion. Although these propulsion systems result in higher performance, the difficulty
in determining the optimal trajectories associated with them is increased. By nature, low-
thrust systerns are required to operate for a much louger interval during, orbit transfer than
their impulsive, chemical propulsion counterparts.  This results in anotable increase in
problem complexity. Sinew the. thrust level and direction must be determined for a
significantly longer duration, the continuous natute of the control parameters makesthe
design of optimization software a particularity challenging task. (>'){/ e 317
Current working methods for determining low-thrust trajectories are calculu&gascd
and require large expenditures of time to produce a single feasible solution. such a
problem formulation results in @ massively multimodal search space, highly seasitive to
user input. Depending upon the complexity of thieu ajectory, the optimization process may
take an ywhere from asingle day to several weeks. An on-going research venture being
conducted by the Jet Propulsion 1.aboratory (J PL) and the 1 University of Illinois at Urbana-
Champaign’s  Computational  Astrodynamics  Research Facility (UTTUC C ARL) i's
investigating alternative methodologies 1 nanattempt to alleviatethese problems.
Automation of the optiinization Process using stochastic search techniques such as
simulated annealing and genetic algortitinns to drive the existing optimization software is a
major topic of research
This study details recent work on implernenting a Pareto genetic algorithm in order
to perform multiobjective optimization for low- thrust orbit transfers,  Development of such
a multiobjective optinization algorithm allows for the generation of “familics” of optimal
trajectories spanning the highly multimodal search space. This is accomplished by ranking
and sorting the. population according to individuals’ Parete optimality, and niching over
established Pareto fronts.  Additionally, it provides increased robustness through its
inherent separation of objectives and elimninates the objective conflict {Hans,1988] which
arises from the classical technique of scalarizing multiple objectives. Trajectory generation
is accomplished through a hybndization of the genetic algorithin with existing JPL.

trajectory optimization software to produce farniliar and usable results.
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Pareto Optinnzation

In order to describe Pareto optimization, it IS first necessary to define multiobjective
optimization, Multiobjective optimization - as opposed to $ift gle-objective optimization - is
[he optimization of a system with more than one objective.  As in single-objcxtiw
optimization, the objective(s) may have any number of equality or inequalit y constr ai nts
imposed upon them. Thiscanbe represented mathematically as (Rae. 1991],

Minimize/Maximize  f(x) i=12,..,N
D

Subject to g(x)<0 J= 12, F

h(x)= 0 k= 1,2...K

Rather than searching for the solution which yields the globally maximal (or minimal) value
for asingle objective function, the “best” solution is found by simultaneously optimizing
several objectives at once. Optimization problems such as these are particularly relevant in
the area of mission design. Trajectory optimization is infactan inherently multiobjective
optimization problem. Although the primary goal of the mission designer in optimizing the
spacecraft’s trajectory isto achieve the final state defined by the mission requirements,
other objectives contribute to what constitutes a “good” trajectory.  Flight time and final
mass delivered to destination are also issues to be formulated as muitiple objectives or
constraints.

These types of optimization problems have traditionall y been dealt with by
averaging each objective with 2 weighting factor. aud then combining the objectives into a
single scalar objective. Such reduction techniques eliminate the need for a more complex,
multiobjective agorithm, but introduce new parameters in the form of the weighting
factors. The user must become familiar with the exact relationship between objectives in
order to determine the proper weighting values that will yield the desired result.
Determination of the weighting factors can, in practice, become an optimization Process in
and of itself.

Problematic issues such as those mentioned above can be resolved by institating a
search algorithm whichperfor ins a Pare.to optimization. Pareto optimization is the principle
of optimizing multiple corpeting objectives. A succinct definition of Pareto optimality was
provided by Edwin Dean.
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A Pareto optimal solution is not unique, but is a member of aset of such
points which arc considered equally good in terms of the vector objective.
This space may be viewed as a space of compromise solutions in which
each objective could be improved, but if it was, it would be improved at the
expense of at least one other objective.. (Dean, 1995]

Another way of stating this would be to say that a solution is Pareto optimal, or
nondominated, for a given set of objectivesif there isno other existing solution which is
superior to that solution in «/l objectives. If a solution exists which is superior in some
objectives, then that solution would constitute @ point on a front of Pareto optimal
solutions. Take for example the problem of minimizing both arguments for a set of points,
{(0,9.(1,3),(2,4) }. Pointlis dominated try both points 2 and 3 in its second coordinate;
however, it dominates points 2 and 3 with respect to the first coordinate, thereforeitisnou-
dominated. Point 3 isdominated with respect to both coordinates by point 2, therefore it is
a dominated individual aud not Pareto optimal, For a more thorough discussion of Pareto
optunalit y, see Generic Algorithms [Goldberg, 1989).

The benefits of incorporating a Pareto search algorithm in trajectory optimization
process are twofold: i.) elimination of the problems encountered in classical multiobjective
optimization methodologies such as object ive conflict, and 1.} development of a Pareto
optimal front of solutions, providing an array of compromise solutions. When applied to
the population-based genetic algorithm, these Pareto concepts should enable automatic
generation Of Pareto optimal solutions. Inthe context of optimal spacecraft trajectory
generation discussed in this study, a Pareto genetic algorithm should provide the mission
designer the capability of generating “families’” of optimal orbit transfers, illustrating the
trades hetween defined objectives.

NSGA/SEPTOP Hybridization

The algorithm used in this study is a hybndization of a Pareto genctic algorithm, and
classical calculus-of-variations-based optimization software. The Pareto genetic algorithm
is one based on the concept of non-dominated sorting originally proposed by Goldberg
{Goldberg, 1989], and later developed by Srinivas and Deb [Srinivas and Deb, 1995] as
the Non-dominated Sorting Genetic Al gorithin (NSGA). A population of individualsis
sorted through and subdivided into Pareto fronts based upon individuals’ Pareto optimality,
each front being assigned a certainrank. Fitnesses for each individual solution arc then
assigned based on rank, and adjusted according to their proximity (resemblance) to other
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solutions using a technique known as niching. Niching helps to maintain population
diversity and serves to counter premature convergence of the population. For further
details, sce[Srinivasand Deb, 1995].

The Pareto genetic algorithm essentially maintains and evolves a setof possible
solutions, making adjustments to individuals depending upon their correspondirlg(‘fi\}_‘n(e‘sls.w .
Fitness values are obtained by integrating the genetic algorithm with a caleutus-based low-
thrust trajectory optimization program known as SEPTOP. developed at the Jet Propuision
Laboratory in Pasadena, California. Hybridization is accomplished through a Baldwinian
evolution strategy. The objective vector for each individual solution is determined by
running SE PTOP for a given set of input parameters determined by the genetic algorithm.
The procedure is Baldwinian in that the fitness returned to NSGA by SEPTOP comresponds
to the input values of the parameters, even though those parameters may have been adjusted
by SEPTOP’s procedures. Baldwinian hybridization strategies are another way of

maintaining diversity in a population of solutions and preventing premature convergence,

Results

Results have been obtained which duplicate the performance remonstrated by Srinivas and
Deb’'s adgorithm [Stinivas and Deb 1995], as well as those. which provide proof-of-concept
for the NSGA/SEFTOP hybrid for mulation. Diagnostics were run on the NSGA algorithm
alone, using the test functions provided by Srinivas and Deb [ 1995] as well as several
devised by the authors to demonstrate efficacy on problems involving more than two
objectives and mixed min/max objectives. Test cases were then run to demonstrate the
effectiveness of the hybridized methodology for Larth-Mars flyby and rendezvous
trajectories, and Earth-Mercury 1 endezvous trajectorics with multiple heliocentric
revolutions.  All cases were successful in generating Pareto optimal  fronts, and thus
providing the desired result of generating “families’ of optima] trajectories containing
arrays of compromise solutions [Figs.1-3].
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Figure 1. Pareto front for Earth-Mars flyby
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Figure 2. Pareto front for Earth-M ars Rendezvous

jag]



G- (10 1 S

600 ~
Nigs
Ww-oy,
u ooy,
-, 500 "
y NiN
o TR
& 4004 W
‘(j 1 o
(& 111 e
3 i :
=g 900~ o,
= 200> no
- W
9 Mmooy
:ﬁ T L[T] .
2 100 .- 1"

42000 FraOt LILC AAE DERT 27 2ad wv/Lw

Heliocentric Revolutions

" : (...
LY
L B I t
Moy e
Wy o
I i l Vel ||["|. t
o o oy
n ]
1 .
n IlL"1u"?wy
L O I T
- I
,|._. *
1

P9

: ._l_. {

i SR TR

I { oy

T ‘ J. 1 1 q--

AN P I TR

1] N ° .l‘

1;v l.,,l_.' I'H<._:,
R R T e

| ny oW e .
1 [ Ty, :
1,_!1” o

EEE) " 3 71737777 . ll : ."
S U N . E
1 NS TEN Y R
-'--'-’-’-
- 15
C. _,.'-’—’J’—
It
2
Transfer Time (yrs.)

Figure 3. Pareto front for Earth-Mercury Rendezvous
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