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Abstract

A new methodology for updating the finite element model of a structure using an incomplete Set
of modal test frequencies and modeshapes is presented. The proposed model updating methodology
involves aleast squares miniuization of the modal dynamic force balance residuas subject to quadratic
inequality constraints introduced to properly account for the expected measurement and modeling
errors. in particular, applications to structural damage detect ion andstructural health monitoring
are addressed. It is demonstrated that the predicted accuracy of a modelupdating methodology
canbe significantly improved by joinitly analyzing multiple sets of test data obtained from repeated
laboratory or field experiments. Simulated modal data obtained on a truss structure are used to assess
t he st rengths, limitations, and overall performance of the proposed model updating methodology in
relation to the numiber and location of sensors, the location and magnitude of errors in the finite
element model of the structure, as well as tile number of measured modes.

1. Introduction

Theneed for model updating arises in the pro cess of constructinga theoretical model of a structure,
Iumost (“its[’s, inorder to improve the accuracy in the model response predictions, the pre-test finite
ele ment 1110( 1(° 1 of the structure [1(7 ( (1 tobeupdat ed tomatchavailabletestdata. Anoth erimportant
application of amodelupdating methodology isint he prediction of structuraldamage (see. for example,
Natke and Yao, 1988; Stubbs, Broome aud O segueda 1990; Fahrat and Hemez, 1993; Papadimitriou ef
@, 1997; Vanik and 1]C ("k, 1997: Katafygiotis and Lam, 1997). The location and size of damage canbe
inferred by monitoring the reduction ui stitfness and miass properties o T the elemenits comprising the
finite elementmodel of tile structure.

The general problem of model updating involves t he selection of the best model from a parameterized
class of mo dels that best fits the [ s{ onse or modal test diita as judged by anappropriately selected
measure of fit. The difficulties associated with this inverse problemaremainly (1110 tothemeasurement
er por in the » test data, the modeling error, and the incompleteness of  the aviailable datarelative to
the model complexity need ed to produce physically meaninful models. As a result, the inverse problem



leads to non-nniqgue solutions and ill-conditioning ( Berman, 1989: Beck, 1989; Mottershead and Friswell,
1993; Beck and Katafygiotis, 1997).

In past vears, several studies have been devoted to reconciling finite element moclels with tmed isured
modal data. A literature review 0f existing finite element mo del updating and damage detection
methods can be found in the survey by Mottershead and Friswell (1993). Fach method has its own
advantages and shortcomings and there isS N0 acceptable met hodology for successfully treating the model
updating and datnage detection problem. The preferable methods of updating are usually the ones which
preserve structural connectivity, Most methods address the problem by choosing sot ne mathematical
criteria which hopefully creates a unique optimal model while neglecting other models that can give an
equally good fit to the measured data. The present study is based 011 this class Of methods. However,
new methods (Beck, 1989; Beck and Katafygiotis, 1997) based on Bayesian statistical inference have
been developed recently for properly addressing the non-uniqueness by computing and considering in the
predictions al (finite or infinite) models that give acceptable fit to the data (Katafygiotis and Beck, 1997,
Vanik and Beck, 1997; Beck and Vanik, 1996). The latter methods are powerful and have shown great
promisein properly incorporating modeling and measurement errors, as well as properly addressing
many of the cliff iculties encountered in the model updating problem, especially those associated with
model and response prediction accuracy.

This study presents a methodology for updating the finite element model of a structure using an
incomplete set of experimentally obtained modal frequencies and modeshapes. It combines the mode-
shape expansion technique proposed by Levine-West, Milinan and Kissil (1996, 1997) with updating
capabilities for predicting both the location and size of errors iu the pre-test finite element model of
a structure. Applications of the proposed methodology to structural damage detectionand structural
health monitoring are addressed. Specifically, aleast squares minimization of the modal dynamic force
balance residuals subject to quadratic inequality constrains involving the difference between expanded
and model-based modeshapes is considered. The proposed measure of fit and the constraint equations
account for the expected mecasurement error inbot h modal frequencies and mode shape components, as
well as the expected modeling errors. The unknown quantities involved in the proposed error measure
include the location and size of errors iuthe properties of the finite element model of the structure,
related to stiffness, mass and geometrical properties, as well as the modeshape values of the coutribut -
ing modes at all degrees of freedom. Iuncluding the complete modeshape as unknowns in the model
updating methodology has the advantage of avoiding the problemn of idernitifyinig the correspondence
between model and measured modes. Another advantage of the expanded modeshapes is intheir use
for predicting potential damage locations or locatious of errors in the properties of the finite element
mwodel. other model updating methodologies based on 1 odeshape expansion techniques include the
work by Farhat and Homez (1993), Alvin(1997), and Vauik and Beck (1997).

2. _Structural Model Updating Methodology

A structural model updating methodology involves choosing the best model from a specitied class
of parameterized structural models based on evaluations using available test data. For the purposes of
the present study, the following class of linear structural models is used:

M@O)F + K)o = f() @

where t he global mass and st if Tness mat rices A(F) and A(8) are assembled, using a finite element
analysis, from the element {or substructure) mass and stiff ness matrices, respectively. The set 8 includes
the uncertain para meters of the model to be assig ned values during the seare 1 for the optinmal moclel.
The parameter set @ may represent mass and stiffness properties at the element or substructure level.
Examples of tinite element properties that can be included in the paramet or set § ave: modul us of
elasticity, cross-sectional area. thickness, wotent of inertia and mass donsity of the finite elements
comprising the model, aswell as spring (tromslational or rotational) stitfnesses u sedd to moclel fixity
conditions at joints ot boundartcs. For convenience. the parameterization 1S chosen such thar the
pro-testfinite element model of the structure corresponds to # = 1.

In particular, the objective in a modal- based mod el npdating methodology is to tind the values of
the pawrameter set # so that the modal data generited by il ainciiiz class of 1110 (¢ 1s bestmatches.in
some sense, the experimentally obtained modal diata. Let e be the numb o o 1 measured modes and
let 2, and ¢, be the e xperiment ally obtained i-th modal frequencey and modeshape of the St LLC I (- at



the measiured 11101 (1 degrees of freedoma. - Ameasure of fit that is explored hereinis divectly (' ItC (1
to the modal dynamic force balance residuals defined by

r{w, ¢, §) = [W(#) ~ w* M (#)]o (2)

Note that the modal dynamic force balance residuals satisfy tile equations r(w;(8), 9;(8),¢) = O,

i =1, ,m wherewi(8) and wi(#),i=1, ... mare respectively the modal frequencies and mass-
normalized 1 node shapes of the first 1 modes of the model (1),

The proposed method for model updating searches for the optimal model parameters  which min-

imize an appropriately selected norm of the modal dynamic force balance residuals 7(wi, @i, 8) subject

t 0 conditions that reflect the fact that both the modal frequencies w; and modeshapes ¢, are sufhi-

ciently close, depending on the experitmental error expected, to the measured modal frequencies and
modeshape components. Mathematically, the model updating problem is stated as a constrained min-
imization problem:

" i
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where ”.’171'2 = a7z is the usual Eucledian norm, (|21, = 27 Rz, R, is an appropriat ely selected weighting
matrix which scales the contribution of each modeinthe measure of fit (3), and P’ is a constant matrix
of zeroes andones such that ¢, = P¢;.

The inequality constraints (4) are introduced to account for the expected measurement error in
the mode-shape componeuts, with «; controlling the expected magnitude of these errors. The value
of &icanbecomputed from a statistical analysis of measurement data taken from repeated modal
test analyses. It is worth pointing out that the methodologies presented by Farhat and Hemez (1993),

Hemez and Farhat (1995) and Alvin (1997) are special cases of the measure ﬁ3) and condition (4). In
particular, both methods correspond to values a; = 0, which fal to directly incorporate the expected

measurement error. I contrast, the proposed inequalit y condit ion provides more flexibility in improving
the fit between model and measured modal data over the space of the parameter set 8.

The weights I, are selected to make the i-th modal term, designated by J, (¢;,8),in the overall
measure of fit (3) non-dimensional and proportional to ii scalar weight 3;. Herein, attention is only
given to the following two choices (Papadimitriouet a1 (1997):

N 2 _ o2
R = BiM NO)/ ] = Ji(¢i,8) = Zﬂ,-(p}ﬂ[(a)@)?@i‘w—’)ﬁ (5)
j=t i
N (JJ‘T) — ,ﬂ,-’)'-?
i = Bik Y O)M@EK 1) = Ji(0:.6) = Z;’i,(p}.\[(ﬂ)g‘),)“’— - (6)
j=1 “j

Note that for the case of perfectly correlated expanded and model mode-sha p es, ice. the case ¢,0 2,
i =1,---.m.al but tile termn correspouding to j = i in the modal measure J, (0, ,8) in (5) and (6)
disappears. The modal measuve J;{ p,.#) becomes proportional to the fractional di fference between
the squa pres of the model and measured modal frequencies for mode i, weighted by thescalars,. T his
cquivalence between the measure J;(; 8) and the aore dir ect measure involving the difference between
the squares of the model and measured modal frequencies was first reported in a recent study (Vanik
and Beck, 1997). [l the general case for which ¢ # 20 all terms in the modal ervor measure (5)
and (6) are present. i particular, the terms in the modal error measure (3) and (6) corresponding to
i # i involve the mass orthogonalit y condit ion bet ween the expandecl and model modeshapes, weighted
by the Tactors Ji(w? - 07)7 /&) and (w3 - &7)?/w/, respectively. Note that for a model which i's
well-correlated with the measured data, the fact ors (0 FAT(#)0, ) = L and (prjl‘;\[(r‘))(,b,)'-’ ~0for j #£ 1.
Therefore, in the process of selecting the optimal model, the mass orthogonality conditions arve also
enforeed through the terms in J, (2, 8) corresponding to j # |,



T he term in (5) and (6) corvesponding to | =.. 7 provides instght into theproblemof specifying the
weights 4;. Specifically. from a Bayesian stat istical point of view the weights 3, roflect the wagnitude
of the meas urement errors e xp ected between the experimental and model frequencies for each maode
(Beck, 1989; Vanik and Beck, 1997). The size of these ervors can be obtained from measurement data
taken from repeated modal test analyses.

It should be noted that the weighting matrix I, given in (,5) is applicable only if AL ~1(8) is non-
singular. Thus, it is not applicable for struct ures with zero tass degrees of freedom. However, this
problem can easily be resolved by applying Guyan model reduction to eliminate the degrees of freedom
corresponding to zero mass. Similarly, tile weighting matrix R, given in (6) is applicable only if the
matrix K (8) is non-singular. Thus, it cannot be applied to structures that are not supported or they
are partially supported such as those employed in space or tested in the lab by suspending them by
very soft springs.

The unknown quantities involved in the proposed error measure of fit (3) include, in addition to
the model parameters 6, the components of the vector ¢ of the contributing modes at both measured
and unmeasured model degrees of freedom. The optimal vector ¢ii = 1, , .. .m result ing from the
minimization can be viewed as the expanded modeshapes consistent with the measured modal data. One
advantage of using an expanded modeshape approach is that there is no need to know the correspondence
between tire measured andmodel modes. The optimization in (3) and (4) earl be performed using
available inequality constaint optimization techniques. However, this is a complex and time-consuming
nonlinear optimization problem. A more conventent two-step iterative procedure is proposed next which
avoids some of the computational difficulties arising inthe minitnization of (3).

2.1. Step 1: Mode-Shape Expansion

Given the current model of the structure at the k-th iteration step, corresponding to the optinal
value of the parameter set 6 designated by %), expanded modeshapes are comput ed by solving the
constrained miuimization problemn:

1

subject to
2 BT
“1’(),- - q‘),,,-“ < (r;’ l (,‘),”-“ Lot=1,---.m (8)
The minirmizat ion is performed wit h respect to the modeshape components at bot h measured and
unmeasured degrees of freedom while holding the values of t he model paramet ers 6 fixed at t heir
current values 85 It can easily be seen that t he above const rained minimization problem is equivalent
subject 10 the i-th inequality

to minimizing the i-th modal measure of fit (K (%)) - u}f[\l((j“')))é,
conditionin (8), i.e. each modeshape is computed independently from tile other modeshapes. Both the
objective function and the inequality constraintsave quadratic in'the set of uuknown parameters. It
can be shown that a unique optitum exists (Levine-West , Milman and Kissil, 1997), denoted herein
k4 1) . . . . L . .
by (,bi P e 1, . . . m. The algorithm for obtaining the unique solution is described in the work by
Levine-West. Milman and Kissil (1996, 1997) for I?; = 1. Extension o f this algorittun to handle a
seneral weight 18 is also straightforward.

2.2, Step 2: Updating of Model Parameters
. . . ka1
In this step. the parameters of the modelarc updated using the latest estimates ¢, b= leom
ot the complete modeshapes. The optimal values 8% 1 corresponding 1o the A+ 1 iteration are obtained
by the solution of the following unconst rained minimization problem:

m

win JERTO) = win SR @) - skl ()
=1

Pkt L) Hik+ 1) I,



This is anoulinear optimization pro blem which ¢ anbe solved using available iterative schemes suchag
teh woditied Newton's method. For the case for which K (8) and Af(#) are tinear functious of” 6 and 12,
is independent of A, the objective function J(#) is quadratic in § and  the unique solution A% can be
obtained without iterations by solving a linear algebraic system in 6.

The updated finite element model obtained at the & 4 1iteration may contain inaccuracies due
to the fact that the expanded modeshapes are based on an inaccurate model obtained at the pre-
vious iteration k. Thus, t h e two step procedure has to be repeated using the new updated finite
clement model until convergence is reached. Specifically, the iterative process is terminated when

glk+ 1) _ gtk) [ k4 1) < tol; where tol, is a user-specified threshold level. Finally, it canbe shown

t hat the opt imal solution 6 and ¢; obt ained from t he iterat ive two-step procedure is also t he optimal
solutiont of the original constrained minimization problem described by equations (3) and (4).

3. Structural Parameterization

Au important issue in finite element model updating is the selection of the type and nuinber of
properties to be included in the paramneter set 6. Different choices are likely to give different model
updates and subsequently affect model predictions. To avoid non-uniqueness and ill-conditioning prob-
lems, there is a need for limiting the nutber of parameters to as few as possible. Such efforts, on
the ot her hand, may lead to the undesirable effect of excluding important uncert ain properties from
the parameter set f. Specifically, the parameterizat ion scheme depends on the purpose of the model
updating analysis. For the purpose of calibrating the finite eletuent model using test data obtained from
the structure after it has beeu built, one would like to exploit possible symmetries and/or similarities
presentin the structure inorder to reduce the munber of parameter to be updated. For example,
consider the three-dimensional structure shown in Fig. 1. Suppose that the tenbaysor substructures
have been manufactured with the goa of beingidentical, although deviations in the properties of the
members and connect ions from one substructure to the other should be expexted due to errors in the
manufacturing process. Theriin amodel correlation methodology, it would be appropriate to assume
that any of the properties of the finite elemnent model for one substructure will be the same as the cor-
responding properties for al other substructures. 1o limit the type and number of nodel parameters,
efforts s} 1ould be concentrated on parameterizing one substructure only. Changes in the properties of
all subst ruct ures will thus be regarded as fully cot related wit h changes in the propert ies of one sub-
structure. For example, one uncertain parameter could be chosent to represent the axial stiffuess of the
diagonal elements for all bays.

The above parameterization becomes inefticient in identifving possible errors in the properties of the
finite eletnent model arising due to significant localized inaccuracies during the manufacturing process
of the structure ordue to localized damage from severe environmental events during the operational
lifetime of the structure. Thus, for the purpose of detecting localized model faults or structural damnage,
alternative parameterization schemes should be explored which are able to locate faulty ordamaged

elements.

3.1. Application to Structural Damage Detection

In structural damage detection and hoalth monitoring applications, datnage is usnally localized to
one or afew struc tural elements or sub-structures of the super-structure. It is assued herein that local
doecrease m stiffness s indicative of the locationand size of diunage. The purpose of the model updating
methodology will be the identificat ion of both the location and size of damage. In this case, the choice
of the parameterization or substructuring scheme is critical for the e flectiveness of the model updating
algorithm. For example, a coarse parameterizivtion of the type described previously will fail to locate
where the damage has occurred. Alternat ively, asub-structuring scheme may be emploved under which
anuncertain parameter is assign ed to each subs teuctur oo Changes in the value of T his parameter will
indicate damage in one or more of the elements comprising the substructare. A tine Sill)-strit(tllilig at
the element 1( vel would be more appropriate for locating damage but it willlead to non-unigueness due
tathelarge 11(11111) (1 of uncertainparameterstobeupdated. A course sill)-stii(tifirlg scheme forwhich
cach sub-structure consists of several finite clements iay fail to reliably deteet stitfuess veductions if



these are localized in one of the elements of the substructure.

An algorithm for identifving potential damage locations and subsequently updating only the prop-
ertics of the finite element model at the identifiec ] locations of di unage is proposed next. Specitically,
the it erative procedure used in the proposed model updating me thodology provides guidance in tden-
tifying the locations of damage and limiting the number of the parameters to be updating to only a
few, thus reducing the problem of ill-co nditioning and non-uniqueness expected when a large number of
parameters 1S updated. For this, the expanded modeshapes predicted in the first step of the proposed
methodology are used to identify possible locations of damage by examiuing, for cach finite elemnent (or
substruct ure), the difference in element & rain energy between the expanded mode-shapes and the model
mode-shapes. The modal element (or subst ruct ure) strain crier.gy for a finite element (or substruct ure)

designated by < ¢ > is defined as
S ) = (1/2)p! Ko, (10)

where K¢ is the stiffness mat rix assembled fromn the element or subst ructure. The following measure of
modal strain energy error is used

Age = STEETY) - s "
ST e k1) (11)
S(é; ")

where goi.k) — ¢; (M) is the modeshape computed from the structural model at it erat ion step k.
It is expected that sufficiently large AS; will be due to modeling errors in the particular elemnent
(or substructure) and will beindicative of probable damage in the element (or substructure). The
properties Of these elements (or substructures) are chosen to be updated if JAS| > tol, for any mode
i,wheretol, is a user-s])ecifid threshold. The thresshold values for each eleinent can be obtained
from statistical analysis of the quantities AS{ based on repeated modal test data carried out for the
undamaged structure. Finally, only the properties of the identified probable damaged elements are
included in the parameter set %1 to be updated during the second step of iteration k + 1. The
properties of the finite element mode] includedint he set 851V may differ from t hose in the set (%)

obtained from the previousiteration.

3.2. Implementation in Software

The finite element model updating technique has beenitmplemented in Matlab to enhance the capa-
bilities of the existing Integrated Modeling of Optical Systemns (IMOS) software package developed at
Jet Propulsion Laboratory. Efficient parameterization schemes have been integrated with the existing
INOS finite element code. These schemes provide the user with the capability of exploring different
parameterization alternatives in the model updating evaluations. At the present time, the lincar pa-
rameterization for the system matrices A (0) and K (8) as a function of the parameters 6 is used. that
IS.

P P
K(0) =Ko+ > K and  M(6) = My+ Y M9, (12)
B 1=1
where Ky, K. My and M, are constant matrices independent of #. This lincar paramet erization
often arises in practical applications. The incorporation of a general nonlinear parameterizationis also
straight forward.

The sOftware has been constructed in a modular way so that enhancements ot modifications can
be independently developed for the four main modules involved, namely, the finite ele ment analysi s
module, sensitivity analysis module, evaluation module accounting for the measure of fit between model
predictions and test data, and the para meterization module.  The goal in the development of the
sOftware is to provide a general user-friendly model updating tool that will greatly enhance moclel
updating evaluations by assisting the 11 ser to explore, revise and identify the best parameterization
scheme and/or measure of fit among the ditferent alternatives available in the software or specified
independently by the user.

1. Example
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Figure 1: Three-dime nsional truss structure

The methodology is assessed by applying it to the problem of damage detection of a structure. The
model of the undamaged structure is a three-dimensional truss shown in Figure 1. It consists of 135
axial rod elements (1 per strut) with a total of 120 degrees of freedom (3 per node). The structure
is supported by restraining all degrees of freedom at nodes 1 to 4. The modulus Of elasticity, cross-
sectional area and mass density are the same for al members. The values are chosen such that the first
eight modal frequencies of the model range from 10 Hz to 200 Hz.

Simulated modal data are used to assess the performance of the proposed damage detection method-
ology. The elements 63, 72 and 108, located at different places outhe structure as shownin Figure 1,
are damaged by reducing the cross -sect ional area of these elements by 50%. The modal test data are
produced by calculating the modal data for the lower eight modes of the damaged model and by adding
Gaussian white noise to simulate measurement and model errors encountered in practice. The standard
deviation of the noise is taken as 1 % and 5% of the values of the modal frequencies and mode-shapes,
respectively.

Two case studies are used to assess the performance of the method in relation to the number and
location of sensors. In t he first case, designated by Case A, alarge number of 99 sensors are used. These
sensors are places at nodes 5 through 37 to provide measurement s atall tivce degrees of freodom for each
node. For the second (irse, designated by Case B, only 15 serisor's are used which are place d at nodes
3. 13, 21,29 and 37 to provide measurements at all three degrees of freedown per node. The properties
in the parameter set # to be update d are the cross-sectional area of each member.  The methodology
was slightly modified to consider as aceeptable only cha nges in the values of the pariuneter set # which
correspond to reductionin the cross-sectional arear of the memb ers.

Multiple set s of simulated modal test data are generated and u sed to compute the mean and the
standawd deviation of the values of the parameter set 8. Multiple sets of modal test data arve ava ilable
from repeated wodal test experiments usually cart ied out in the laboratoty or obtained by monitoring
over @ period of time the dyvnamic modal charac teristics of a structure. This idea of using the information
from repeated modal measurenients t0 establish the location and size of d: unage is similar to the one
i sed by Vauik (1997) for structurathealthmomtorinig 1111 p oses. The use of repeated measnrenwent have
shown to filter out mea suretne nt error and thus e improve substantially the pre dictive aceuracy of
the damage detection methodology.

Using the weights 117, givenby (6) with o, == ().1 and 3,00, 02 torall [110( 1¢ s, the predicted location
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Figure 2: Predicted locations and magnitude of damage; Case A

and size of damage is shown in Figures 2 and 3 for the cases A and B, respectively. The results for the
mean and the standard deviation of the predictions are based on five sets of simulated data. For case
A, the predicted mean reductions in the cross-sectional area of members 63, 72 and 108 are 45% 28%
and 52% with standard deviations 6%, 5% and 8%, respectively. These three members have correctly
been identified as the damaged members with the highest mean reduction in cross-sect jonal area. The
relatively small values of the standard deviation of these estimates is indicative of the relatively high
cottfidence that damage has occurred in these members. In contrast, the standard deviation estimates
of the rest of the members with Ol -zero mean reduction of Cross-sectional area are relative large. This
is due to the fact that only asmall percentage of the data sets have resulted in nou-zero reduction in
cross- sectional area of these members. Specifically, 3 to 4 out of the 5 data sets predicted no reduction
or alinost insignificant reduction inthe cross-sectional area for these members. Theuse of a small size
of simulated modal data sets has resultedin relatively high mean reduction values. As the number
of modal data and therefore the number of modal tests increases, the mean values and the standard
deviation for thescmembers decreases. The results for the case B show a similar pattern. The predicted
mean reductions in the cross-sectional area of members 63, 72 and 108 are 58%, 32% and 33% with
standard deviations 5%, 11% and 7%, respectivelyv. It is wortlinoting that the resolution of the size of
damage at element 10S is not as goo d as for tile Case A b ecau se sensors are not directly placed in the
vicinity of the member 108. Howev-er, the elements 63, 72 and 108 have been correctly identif ied as the
dam aged elements.

Extensive numerical studies has also been ¢ arried out which show that the accura ey of the predictions
increascs as the number of measured modes inereases, or as the level of the measurement error decreases.
Location and number of sensors also play a role in the resolution of location and size of damage.

Finally, the effect of the choice of the weight /£, on the results was also explored by repeating the
numerical studies using the weight £2; defined by (5), as well as using the weight 7¢; = I for all i, where I
is the identity matrix. For both weights it was found that the iterative model updating methodology has
much slower rate of convergeuce. Moreover, for most cases examined, the location and size of damage
was correctly identified at element 63. However, no siguificant damage was predicted for members 72
and 10 8, although both members were correctly identifi ed as faulty elements,

5. Conelusions
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Figure 3: Predicted locations and magnitude of damage; Case B

The proposed modal-based model updating methodology is suitable for both model correlation
and damage detection purposes. It is based onan iterative scheme which provides estimates of the

expanded mode-shapes of each measured mode and predictions of the probablelocations aud size of
errors in the proper ties of the finite element model of a structure. The expected measurement and

modeling errors are directly accounted for in the methodology. In particular, applications to structural
damage detection and structural health monitoring are addressed. It is suggested that the predicted
accuracy of amodel updating methodology ¢t be significantly improved by jointly analyzing multiple
sets Of test data obtained from repeated laboratory or field tests or during structural health monitoring,.
A study using simulated data demonst rated that the methodology is promising for reliably predicting
both the location and the size of damage in a structure. Measurement error was incorporated iuthe
data by adding noise in the simulated data. The noise levels considered are similar to those expected
in practical applications. Although the method suggested hereiu works well with simulated modal data
and simulated measurement error, the practical use of this immethod with real data requires further study.
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