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ABSTRACT

DARTS Shell (Dshell)is a multi-mission spacecrafl
simulator for development, test, and wverification of
flight software and hardware. Dshell is poriable
from desktop workstations to real-time, hardware-in-
the-loop simulation environments.

Dshel 1 integrates the DA RTS SC flexible multi-
body dynamics computational engine with libraries of
hardware models (for actuators, sensors, motors and
encoders) into an integrated simulation environment
that can be easily configured and interfaced with flight
software and hardware for various real-timne and 11071
real-time SIC simulation needs.

Dshell is in use by several of NASA’s inter -
planctary decp space missions including Galilco,
Cuassini, Mars DPathfinder, and several projects in
JPL ‘s Flight System Testbed.

1INTRODUCTION

1)suiLl is a high fiddity, multi-mission spacecraftdy-
namics simulation package. The main goals of the
D shELl environment, are: to significantly reduce the
soft ware development required to interface dynamics
simulators, hardware models and hardware-in-t he-loop
devices; to eliminate the need for separate interface de-
velopment, efforts across the various (analysis, soft ware
and real-time) testbeds within aproject, and allow
easy migration of models between testbeds; to allow
the casy support of a variety of S/C configurations and
models and simulation environments for al the phases
of the mission; allow the easy reuse and cust omization
of hardware models across various missions.

The core of DsHELL is 1)ARTS, a generic comput a-
tion engine for flexible multi-body dynamics. However,
spracecraft dynamics are affected and determined by
specific classes of real-time hardware devices. Thicse
dynamics-d e pendent models can be grouped, as they
arc in 1) SHEI 1, into actuator, sensor, motor and en -

coder models (see See. 2.2 for the definition of these
classes). Act uators and motors being t hose devices
that affect the dynamics, aud sensors and encoders
which are affected by the dynamics. Hardware mod-
els for devices such as gyroscopes, thrusters, and star-
scanuers are organized in libraries, which can be cre-
ated or augmented by the user. Models have stan-
dardized interfaces to I ARTS, the external simulation
environmenit, and the user. The plug and play simu-
lat ion can be easily configured and interfaced to flight
soft ware for algorit hin development, as well as for test
and integration. The object-oriented model library in-
cludes extensive instruinentation for giving a user the
high visibility into the simulation necessary for effec-
tive use as a design, development and test tool. The
design of 1)suennmakes spacecraft simulation asimple
task of asscibling the desived ensemnble of hardware
models, with so1ne notion of the spacecraft’s inertia
aud flexibility.

DsHeLL and its models are classified as real-time
because they complete their execution within a tick
of simulation time. This deterministic performance is
required for synchronizing t he 1 )sHELY, models with
ot hersimulationmodels outside of the DsiinLL envi-
routnent. These other simulat ion models may m may
not meet real-t e performance cr it eria. Models are
implemented as non-real-time due to the nature of the
device they simulate, or to ensut e that critical real-
time performance requirements of the simulator are
met. Nell-rca-t imemodels respond to events or com-
mands that do not necessarily complete within a tick
boundary. Figure 2 shows an example of the kinds of
models that canbe part of a realistic spacecraft siinula-
tion; it also shows how lloll-rea-tilnc models can affect
t he behavior of real-time ID st ELL models. For exan-
ple with optical navigation, the camera instrument, is
used by AACS flight software to determine the point-
ing precision of the spacecraft, which in turn affects
how oft en the 181k 1L t hrust ers are fired fired. The
camera image must be synchronized with the space-
craft dynamics, but the siimulation should not have to
wait to receive the camera image. It is therefore de-
sit eable t o have event-driven non-realt ime models 1 un
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Figure 1: Example spacecraft simulat ion
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communicate with DsteLL real-time modecls in order
tosimulate a complete spacecraft. To that end, LIBSIM
was developed.

LiBSIMisalibrary which uses a data flow paradigm
for connecting higher-level device and subsystem mod-
cls, and provides special features for modeling faults.
Examples of L1BSIM models include bus interfaces, de-
vice clectronics, and valves. These properties make
1111S1 Minherently the highest software layer of the
simulator. Event-driven hardware device models can
be written with L] BSIM, and event-driven processes
cau be queried via a LIBS1 M wrapper model. A 11 []-
S 1M wrapper model would send and receive messages
to and from the non-real-tilnc processes, to incot po-
rate the data from these processes into the real-time
core. And it is through a LIBSIM wrapper model that
I suen L (figure 3) can have conmectivity with a higher
level simulator. (See reference [1] for more information
OnLIBSIMM.)

Dsterny, 1) ArTS and LIBSIM are all part of an inte-
grated software package called the Aut onomy Testbed
Environment (ATBE) toolkit. This toolkit, also crones
with a 31) animation tool called D VIEw which renders
the motion of a spacecraft, as computed by D snkLL.
Figure | illustrates a simple spacecraft simulator which
was written using the ATBE toolkit. This simple
spacecraft in the spacecraft simulator is being au-
tonotnously controlled by A ACS flight software, with
the spacecraft, state variables being plotted in real-
time. A LIBSIM fault injection GUI allows faults to
be injected into the spacecraft simulator to test the
responsc of flight software faults. (Sccreference [2]
and [1] for a more detailed overview of ATI3E. ) But
the core package in the ATBE toolkit is still DsukLL,
without which redlistic spacecraft simulation could not
be built.

2 DSHELL DYNAMICS SIMULATOR

DIsteLnL isamulti-mission spacecraft simulator for de-
velopment, test and verification of flight software and
dynamics-dep endent hardware. 1) S1[llI, is portable
from desktop workstations to real-timne, hardware-in-
the-loop simulation environments. | JSHELL integrates
the | Darrs flexible multi-body dynamics comput a-
tional engine and libraries of hardware models (for
actuators, sensors and motors) into a simulation envi -
ronment that can be casily configured and interfaced
with flight, software and hardware for various real-time
andnon real-tilnc spacecraft, sirmulation needs.

The main goas of theDsHrLL environment are: to
Significantly reduce the software development required
to interface dynamics simulators, hardware models
and hard ware-ir i-the-loop devices; to eliminate the
need for separate interface development cfforts across
the various testbeds (analysis, software and real-time)
within a project, and allow easy migration of models
between testbeds; to allow the easy support of a vari-
ety of S/C configurat ions and models and simulation
environments for al the phases of the mission; and to
permit the easy reuse and customization of hardware
models across various missions.

D suenn is a library implemented in C4 + may be
cmbedded in another simulator as described in sec-
tion 1. Or, asmall “main()” rout ine can be written to
send data between flight software and I shisLL models
and advance simulat ion time. For model development,
a geueric “open-loop” version of main() is av-ailable in
which the user controls tire! and data to and from
models. This is invaluable for wiiting batch scripts to
do regression testing.

Simulation time is tracked by Dstirl, from the
start of simulation. Each tick of siimulation time is
an 1/0 step for DsHELL. Inputs and outputs to and
from 1) SHELL models are expected to occur within that
tick. Each 1/0 step consists of an integer number of
integration steps. And for cachintegration step,
1> ARTS computes the multi-body dynamics.

2.1 DArTs Dynamics Algorithms for Real-
Time Simulation

The D Arrs dynamics compute engine [3] implements
a fast and cflicient spatial algebra recursive algo-
rithin [4, 5] for solving the dynamics of flexible, multi-
body, t ree-topology systems. 1t is very general, and
is also i usc for non-spacecraft applications such as
molecular dynamics [6]. DARTS is a library imple-
mented in ANSI C available for Unix and VxWorks
platforms.

An analyst provides an input file that is read a run
time and specifies the bodies that make up the space-
craft: their masses, inertial and flexibility properties,
aswell ast he types of hinges that bind t hem together.
A hinge connects two bodies, and there are many types
available (such as pin, [J-joint, gimbal, translational,
and others). (When D arrs is used inconjunt ion wit h
D snery, all the DARTS information can be placed i
the DsHELL input file.) Bodies may be connected in
a tree topology, wit h each body having a single par-
ent body, and the root of the trec being referred to as




the base body. The locations of named nodes where
forces may be applied or dynamics properties should
1)e computed arc also specified inaDARTS input file.
Because the above data is not hard-coded, dynamics
models can be easily constructed for different missions,
and models can be changed without, necessitating the
recompilation of source code.

2.2 DsSHELL Model Classes

Ns1l k1L provides C++-base classes for hardware de-
vice models. Actuators canimpart a force on anode
of a body, such as a thruster. sensors are attached
to a node of a body and make use of dynamics calcu-
lations produced by DArTs{or that node. Fxamples
of sensor models include star trackers and gyroscopes.
Motors are attached to hinges and are used to articu-
late! the bodies that the hinge connects. Encoders are
also atached to hinges, and are to motors what scusors
arcto actuators. DsHELL device models are massless,
and other than applying a force or articulating a body,
do not aflect the dynamics of the spacecraft. All four
of these classes arc derived from acommon base class
(Model), which defines data and methods associated
with each model.

Data for DsnrLL models consists of parameters, dis-
crete states, continuous states, commands, and out-
puts. Parameters are values that are set while read-
ing the DSHELL input file upon startup, but arc not
changeable by the model itself. Discrete states are
initialized at startup, and may be modified by both
the model and the user during run time. Contin-
uous states arc updated by the numerical integra-
tor in 1 JARTS, and require the model builder to pro-
vide a method for computing the derivatives of these
states. Commands are time tagged data structures
sent by flight software, and outputs are time tagged
data structures sent to flight software. Parameters,
discrete states, commands and outputs may be of any
basic C data type (such as intor double), c enumer-
ation, structure, or fixed-size array. Structures may
benested, may contain arrays, arrays of structures are
permitted, and so on. Continuous states arc cither
dou ble or arrays of double.

~'here are various methods available for a D sni,
model to define its behavior. Pre- and post- 1/0
step mecthods ate called a the beginning and end of
an 1/0 step, and are typically used for models to re-
trieve commands from and send data to flight soft ware,
respectively. Pre- and post-integration step meth-
ods are caled at the beginning and end of an integra-
tionstep, and are typically used to compute discrete

states.  Iach integration step, an integrator calls a
function to compute the time! derivative of the DAwrTS
state vector. This function aso cals pre- and post-
derivative mcthods for each D SHELL model immedi-
ately before and after computation of 1 Axis deriva-
tives. The pre-derivative method is typically used for
actuators to apply forces to the nodes they are at-
tached to. The post-derivative method is typically
used to comput e the time derivative of any continuous
dtat es t he model may have. The number of times thesc
derivative methods are actualy called per integration
step depends on the numerical integration algorithm
sclected. Note that unlike L 1BSIM, DsHELL models do
not interact with each other directly, so the relative
order in which their methods are executed docs not
matter (figure 4).

Thebase classes provide several mcthods useful to a
model, including methods to get the simulation time,
step sires, and 1) AIVI's information. These would be
called from the model’s pre/post1/0 step and other
methods described in the previous paragraph.

Actuator & Space@%ﬂ =
Motor FSW & Temsdt
Commands Enviromment Sensor &
R Encoder
Data
( } DARTS Shell (Dshelt) ; )

T :

DARTS[—*
Q |

Semsors |
Encoders

Abctigttors
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Figure 4: Typical data flow for a D stikn1, simulation

2.3 DSHELL Model Libraries

Classes for actual device models ate derived ft om any
of the four basce classes described in section 2.2. The
code for model classes may be groupedinto reusable
libr aries, organized perhaps by mission, by vendor, or
by type of device. There are several models available
for tilt'ustcls, gyroscopes, star scanners, accelerome-
ters, and other devices used on JPL spacecraft. They
can beused as-is for quick prototype simulations, or as
astarting point for similar models on a new spacecraft.



Because al D snrLn models use the same set of
predefined inethods, an automatic code generator is
available to simplify model development. The model
developer writes a text file that describes the model,
list ing the types, names, and descriptions of the pa-
ramniecters, states, Connnallds,and ()utputs associated
with the model. A prototype graphical user interface
is available for generating this file. The code gencrator
takes this file as input, and generates a C-++ header
file and stuh source file for the model class. The devel-
oper then fills in methods (pre/post 1/O step and the
rest) as needed to define the model’s behavior. Very
little knowledge of C4+ is needed, but it is useful to
be familiar with C.

The automatic code generator also makes an inter-
face class, specific to the model class the developer
is defining (figure 6). The developer never changes
this code and does not need to even look at it. This
class provides model-specific functions to issue com-
mands and retrieve outputs from a model, code com-
monly needed to define atext interface to the model’s
data, and other methods needed by DSHELT, The com-
mand and output functions would typically be called
from the simulator or main() routine that calls other
D sneLl routines.  They are model-specific to keep
them tylm-safe (avoiding the use of void * pointers
reduces the occurrence of some progr amming err cm).
This also allows a simpler interface for commands and
outputs of basic types, and is faster than pei forming
any kind of marshalling or conversion of structures.
The code generated for tile interface class is meant to
climinate tedious coding by a developer that is typ-
ically needed for a model. It IS generated in a class
scparate from the actual model class to clearly delit -
cate code the developer should modify. This helps keep
the code for the stub model class small.

| Model |

\ \ |

(‘Actuator i| Sensor { Motor ! (Encoderj

model base classes
provide interface hooks
to DARTS and Dshell

7 rer
1 model-specific interface class

MpfThrusterlF gutomatically generated, developer does not modify
| ’ ‘ provides text interface to model

. model class
‘ ( MpfThruster

“stub” code automatically generated
developer fills in methods to define model behavior

Figure 6: DSHELL class hicrarchy

2.4 Dsuert Run Time Environment

The input file containing DAKTS information may also
contain statements to instantiate models, specifying
the model class and instance name. States and pa-
rameters for a model may be initialized here as well.
Again, not had-coding this information makes it eas-
ier to change configurations without recompiling code.

Like nisSim, DsiELL also has an extensive set of
T'el commands which can be used to get information
about the siinulation and models therein. In partic-
ular, the values of model states and parameters can
be pecked and poked from the command line, com-
mands to models can be issued as if they came from
flight software, and outputs from models can be exam-
ined. There are enough commands available to query
which models are instantiated and the data types aud
descriptions of model states that a graphical user in-
terface to display state data can dynamically create
itself, so a programmer does not need to change GUI
code if the simulation configuration changes or new
models are added. A prototype of such a GUI has
been implemented using T#%.

1) Ar{i's and D sneLL model state variables can «

checkpointed to a text file containing “poke” corn-
mands. This file can be edited by the user if necessary
without needing to kyow any syntax other than the
alrcady familiar 7'l commands. On a subsequent run,
this file can be used to initialize states and resume a
previous run.

D sHELL can also keep track of multiple S/C dynam-
ics models. Alternate dynamics models of the same
spacecraft canbe selected from (such as in-cruise ver-
susin-orbit 111pqers with different fuel slosh behavior,
or PI¢- yersus post- probe release). Only one such al-
ternate dynamics model may be active at any given
tirne, and 1Y snunt device models implicitly interface
only to the active model. Or, multiple spacecraft can
be bookkept, as in the hTcw Millennium Program’s
Decp Space Flight 3 formation flying mission. Any
combination of alternate models for multiple space-
craft is allowed.

As with LIBSIM and DARTS models, DSHELL 1nod-
elscanbe deactivated from the 7'¢l command line or
startup file. This is useful for debugging, or if there
are alternate models for the same spacecraft device
(1herhaps one would int erface to actual hardwarc-in-
the-loop).

It is also possible to schedule C functions and Tl



MpfThruster.tcl »  DshellAutoGen
Auto-code generator
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by a Makefile

Input file describing the
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model, created by
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text editor or a GUI

These four files are
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temporary directory
separate from model
stub code
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0 | MpfThruster.pod

Figure 5: Input and Output Files for the Dstrnt Automatic Code Generator

scripts a run timne for either one-time or repeated exe-
cution. This is very handy for debugging and monitor-
ing variables. It is also useful for interfacing D) snksLL to
other tools. Such interfaces have been created to Real-
Time Innovation, Inc.’s data monitoring tool Stetho-
Scope and to JPL’s 3D viewer Dview. Interfaces t 0
other t00IS can be created in @ similar nauner, with-
out having to change DsHELL code. Aside from keep-
ing 1) SHELL, code smaller and cleaner, it makes it casy
to mix and match interfaces among testbeds which use
different monitoring toals.

3 APPLICATIONS

Al

DsHel 1, w a s recently used by the JP1’s Cassini
Project. The project wished to update the dynam-
ics computation core of its Flight Software Devel-
opment System (FSDS). FSDS was developed to
simulate the A ACS of the Cassinii spacecraft in order
to provide a testbed for Cassini flight software devel-
opment. The Cassini Project developed FSDS using
D ARTS to compute mulit-body dynamics, prior to the
existence of DsHeLL and the ATBE toolkit,. As a
result, 1 JARTS was “hardwired” into their simulator
without an interface to it.

With minimal intrusion into the source code, the
1) SHELL was successfully integrated into FSDS. The
addition of I) surLL provided a secamless T'cl inter-
face to peck and poke its I) ArRTS state variables and
parameters, and created a scamnless interface to the
four alternate spacecraft dynamics models for FSDS.

; The I sueLL interface also provided visibility into the

) SHELL slid 1) ARTS data for external monitoring tools.
One such monitoring tool is StethoScope, developed
by Real-Time Innovations, Inc. With Stethoscope, the
D stikLL and 1) ARTS variables can be monitored in real-
time. And also in real-time, DV EW could display the
dynamic behavior of t he spacecraft. The mal-time
g1 aphical displays of the dynamic state of the space-
craft allow an analyst to analyze and debug during the
simulation, and not just post-simulation. The ability
to peck and poke the D sHE LL variables allows the ana-
lyst to change the dynamics state to test theresponse
of the flight software to different dynamic states with-
out restarting the simulation.

After the DsueL1, toolkit was successfully inte-
grated into FSDS, FSDS was redubbed DSHELL
High Speed Simulator (Duss). Currently, the var-
ious device models in DHss are lining converted into
D snenL and LiBSIMmodels to also provide pex!k/poke,
monitoring and checkpointing capabilitics to D1HSS.

This work demonstrates the versatility of DSHELL.
It can be used not only to build new sitnulators, but
also to add more capabilities to existing sitnulators and
testbeds which currently usct D ArTs for dynamics com-
putation.

4 CONCLUSION

A recuscable, real-time spacecraft simulator is essential
for the design, development, testing and integration of
aut onomy flight software and hardware. DSH ELL was
made for just such anced. Since unique spacecrafts



are defined in an juput file for Dsnern, there is no ar-
chitectural limitation to the reuse of DsHELL. Andits
real-tiine performance and design allows real hardware
to be swapped with any DsHELL hardware model, and
vice versa. This characteristic removes domain bound-
aries for the types of testbeds with which DSH ELL can
be used. DsliLL can migrate from a poor fidelity,
pure goftware simulation, to a high fidelity, highbred
hardware and software simulation.

Currently, DsneLL and the ATBE toolkit are being
used in the development of Cassini High Speed Sim-
ulator, which is nearing completion. The High Speed
Simulator will be used during Cassini mission opcera-
tions to test command sequences prior to uplink.

For more information on D SHELL, visit the 1) steLL
web siter http://dshel ] jplnasa.gov
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