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Abstract

The statistical mechanical theory of a two-dimensional Euler fluidis applied for the first timne
to explore the spontaneous self-organization of zonal jets in outer planet atmospheres. Globally
conserved integrals of motion are found to play a central role in defining jet structure. Maximum-
entropy jet structures are calculated for the limit where the constraint to conserve energy does not
substantially prevent vorticity mixing throughout the atmosphere. Zonal wind profiles predicted
for Uranus and Neptune in this limit agree quite well with available observations. We discuss how

the theory might apply to Jupiter and Saturn, where vorticity mixing may be less eflicient.



The atmospheres of Jupiter,Saturu, Uranus,and Neptune are dominated by strong eastward
and westward winds, or “zonal jets’, that alternate in direction between thepoles(lIig. 1 ). Jupiter
and Saturn possess strong eastward winds at their eguators, flanked by several alternating jets
arranged approximately symmetrically on either side of the equatorial plane.Uranus and Neptune
possess westward jets at their equators and a single eastward jet at high latitudes in each hemi-
sphere. We know that these motions mustbe driven by buoyancy forces arising from the density
contrasts induced by heat transfer, but we do not yet understand how the winds ultimately organize

themselves into the patterns we observe. *

Attempts to understand the origin of the zonal winds at the altitudes where clouds form have
followed one of two paths. One class of models treats the outer planet atmosphere as a shallow
weather layer, ignoring any influence from the deep fluid interior.*These models neglect forcing by
solar heating or internal heat flow. Instead, the motions are initialized as a random velocity field and
the flow’ evolves through two-dimensional (21))turbulent advection in anondissipative environment.
In some of the models the flow is maintained by baroclinic instability yin the weather layer.3 Although
highly idealized in their representation of the density stratification and thermodynamic effects, the
shallow layer models have the advantage of allowing the effects of various processes and planetary
physical parameters to be isolated in a relatively simple calculation. More rigorous calculations
have involved 3D} numerical simulations of thermal convection in rapidly rotating, deep spherical
shells.* Both shallow weather layer models and thermal convection models have been successful in
generating alternating zonal jets with approximately the correct amplitude and latitudinal width,
but the computed latitude profiles of longitude-mean zonalwind are far from those observed on

the outer planets .23

It is intriguing that both weather layer and convection models yield alternating jets despite the
fact that their motions are forced in very different ways and in different geometries. Perhaps the
answer lies in what the models have in common: anisotropic turbulent flow.In the convection
models. anisotropy of the velocity field is engendered primarily by rapid rotation in a weakly strat-
ified environment. whereas in the weather layer models it enters as a consequence of rapid rotation
and asmall aspect ratio of vertical to horizontal leugth scales. Long-lived coherent structures, such
as jets and vortices, are often seen to emerge spontaneously from anisotropic turbulence in a wide

variety of geophysical flows.” ‘1’'best structures hehave as self-organizing, attracting patterus. Is



it possible that anisotropic turbulent advectionassumes the defining role in organizing t he zonal
jets? Applying this view’ tothe outer planets, one could hypothesize that the jets self-organize
out of a statistical equilibrium of advective processes. while weak thermodynamic forcing, from the
Sunand/or from internal heat flow, enters only to maintain the differential rotation against weak
dissipation. Thisis not @ new idea; in fact, it W’as the underlying motivation for shallow-water

model simulations performed by Cho and Polvani.?

To explore the consequences of this hypothesis, it is desirable to calculate the steady, alternating
jet structures toward which inviscid flow would evolve on the four outer planets, in the absence
of competing processes, and compare the results to the observed wind patterns.To do so, we
take advantage of recent advances in the statistical mechanical theory of the 2D Euler equation.®
Application of this theory to the problem of jet self-organization has the benefit of defining and un-
derscoring the significance of the globally conserved integrals of motion for characterizing turbulent
advection’s effect on the global circulation. Solutions under the theory take the form of latitude

profiles of mean zonal wind that maximize a suitably defined entropy, subject to al the constraints

imposed by the conserved quantities.

There is not sufficient space here to review the statistical mechanical theory in detail: rigorous
accounts can be foundin Robert and Sommeria (1991 ) and Miller et a. (1992), who provide different
approaches to its formulation.® Although the literature on the subject has dealt entirely with strictly
2D flows, the theory can be readily generalized to certain approximate descriptions of 31) geophysical
flows. What is needed is a set of approximations to the primitive equations that allow definition
of a conserved potential vorticity, a streamfunction for the horizontal component of the flow, and
aninvertibility principle connecting the two, analogous to that connecting the streamfunction and
potential vorticity in the quasigeostrophic system. The simplest approximation satisfying these
criteria on the sphere corresponds to nondivergentbarotropic flow. Although simple, this system
will vield physically interesting results if baroclinic production of vorticity is weak in the neutrally
stratified, fluid interiors of the outer planets.For simplicity. welimit our initial investigation to

barotropic flow in a shallow spherica shell.

Geophysical flows tend to develop very complex pot ential vorticity (PV) filaments on small “fine-

grain” scales while developing coherent st ruct ures at larger “coarse-grain™scales. The statistical



mechanical theory rests on a separation of these scales and provides ameansto calculate the
flow structure on the scale of the domain size. ‘[’ he coarse-grain PV fieldis described in terms
of local probability distributions p(o,x) of measuring a PV o at position X. The distribution
p(o, x) corresponding to the preferred statistical steady state is found by maximizing the Gibbs
entropy S = — [ #x doplogp subject to the constraints to conserve global average energy F
(kinetic energy in the barotropic model), angular momentum about the rotation axis 1,, and
moments of the PV distribution I',,. Furthermore,if we search for motions that are symmetric
about the eguatorial plane, the solutions for stream function are required to have a definite, even
or odd, parity. PV reduces in the barotropic model to absolute vorticity q = W2y’ wherey/ is
the coarse-grain streamfunction measured in the inertial frame. For barotropic flow, the globally
conserved integrals are then given by

1‘::% Vfl-:,iw’q f; :/vif,quim I ~/‘d—:iq (1)
where V is the domain volume, ¢ is latitude, and « is the planetary radius. ‘I’he variational problem
associated with maximizing S leads to the following equation®” for a transformed streamfunction
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3, the (positive or negative) ‘(inverse temperature” and 7 are Lagrange multipliers associated with
conservation of F and I.., respectively, and a(o) is associated with conservation of I',,. They
are determined implicitly through the integral expressions for E, L., andI',, given above. The
Lagrange multipliers measure the extent to which the integral constraints prevent the system from
attaining its maximum possible entropy. The state with the largest entropy possible is the one
where poteuntial vorticity is completely mixed throughout the domain; such a state will have a
relatively low value of 3. Conversely. vorticity mixing is strongly inhibited by the energy constraint

when 3 is large.

For the calculations presented here, we confine our attention to finding solutions only for a
linearized version of the theory. the strong miring limit.in which the constraint to conserve the

global average energy does notsubstantially rest rictmixing of potential vorticity throughout the



atmosphere (small 3).” [n general, 2 Euler flow conserves anin finite number of global integrals
of motion.? Solutions in the strong mixing limit, however, are found to depend parametrically
ononly two, the global average total energy andtotal angular momentum about the rotation
axis. Previous studies, using weather-layer models to explore the effects of turbulent advection,??
have implicitly constrained their initial conditions to give approximately correct values for the
initial global-average energy but have generally neglected the global-average angular momentum.
The calculations presented here demonstrate the indispensable connection that exists between an
atmosphere’s mean zonal wind profile and its global invariant of motion whenever 21) advection is
the dominant organizing process for the flow. Unfortunately, the theory cannot be used to address
the question of how the global invariants of motion came to have their present values, but once

these invariants are specified, the maximum-entropy jet structure can be calculated.

Linearizing (2) in the strong-mixing limit for the axisymmetric case, we obtain a Helmholtz

equation for the transformed stream function of the maximum-entropy jet structure,

1 d d . .
cosd)_(igcos ¢5%§ + Ba’y = —2nsing + B{¢). ©)

Here, (') denotes the global average of v, and 3= B1'5, where 1',is the global average eustrophy
(squared vorticity). Although (3) is linear, the global problem is still nonlinear, due to the nonlin-

earity Of the integral constraints. Solutions are found by expanding the basic equations inpowers
of goy. The expansions are carried out to order 1 for streamfunction and order 2 for tile energy,
entropy, and angular momentum’. Eq. (3) admits two classes of solution, depending on whether or
not 3 =-X,, where A, = —n(n+1)/a?, n>1, isone of the eigenvalues of the axisymmetric Lapla-
cian in spherical geometry. For 3 # —A,,, the solutions are a family of jet profiles with zonal wind
x Upcoso, i.e., afamily of rigid-body rotations. The more interesting case occurs when 3 = —\,.
For this case, (3) combined withthe integral constraints for £ and L. leads to the solution

2(2n + 1)|Aja?y 4 ()
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where P, is the Legendre polyvnomial of degree m, v is the streamfunction measuredin a frame
rotating at frequency Q, and \ =37%/a® — L’. The zonal wind as secen in the planet’s rotating

g e ol = _la o
frame is givenby u = — 29, [/do.
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The rigid- body rotations (3 # —\,,) have A =0, which of course will not be satisfied for
arbitrary F and I.., and hence these solutions are trivial. Nontrivial solutions exist for A < 0.
Symmetry across the equatorial plane demands solutions with a definite parity. We see that i,
must have odd parity because of the presence of Fi(sing) in (4). Therefore, n is odd. ‘I'he entropy

for mode n in the strong-mixing limit is given by

Su= S0 ppuas B 5
where  So is a consteS,.smaximized for minimum . Since n is odd and greater than 1,
maximum entropy solutions correspond to n= 3. q'bus, solutions consist of a family of zonal jet
structures that depend parametrically on the two global invariants £ and 7,,. The enstrophy I’y
and higher moments of the vorticity do not enter the solutions in the strong-mixing limit. We find
that all strong-mixing jet structures possess either i ) a subrogating jet at the equator and a single
prograde, high-latitude jet in each hemisphere, reminiscent of the observed zonalwind profiles of
Uranus and Neptune (Fig.1), or ii) a wind profile with the same general shape but with opposite
sign. This multiplicity of the solutions stems from the nonlinearity of the energy conservation

constraint.

If we anticipate solutions relevant to Uranus and Neptune and choose them to give subrotation
at the equator, we find that the barotropicstrong- mixing limit yields zonal wind profiles showing
remarkable agreement with the observed jets of Uranus and good agreement with Neptune's when
appropriate values of global average kinetic energy and angular momentum are used. These can
be estimated for Uranus, using a schematic interpolation/extrapolation of Voyager-2 cloud-tracked
winds.® Defining e=(F — %QQ(R)/(Q?(ﬂ) and 1 =(/. - 39(12)/( Qa?), which represent nondi-
mensional departures of £ and L. from their values for a thin spherical shell rigidly rotating with
frequency .we find ¢ = 0.012 and / = 0.010 for the schematic profile. The barotropic. strong-
mixing jet structure derived with these values is shown in Figure 2a. Agrecment with the schematic
fit is very good, within7 m see--l at any latitude, suggesting that the strong-mixing regime is a
good approximation for Uranus and that the self-organization hypothesis is valid for this planet.
Results for Neptune are shown in Fig. 2b for a fixed value of ¢ and two values of . T'he theory
appears to underestimate the strengthof the prograde jet a 70° S: asolution forced to recover this

jet (having a slightly differe nt value for /) forms too narrow and strong an equatorial jet. Perhaps



the strong-mixing limit is a worse approximation for Neptune than for Uranus, orperhapsmore
than just anisotropic turbulent advection controls the wind profile. We needto apply the full theory

to decide which is correct.?

The jet structures of Jupiter and Saturn (Fig. |) cannot be represented by the smooth profiles
obtained in the strong-mixing limit. This limit predicts every planet should have three jets like
Uranus and Neptune, irrespective of its values of F, L., and I, but it breaks down at large 3.
‘I"he pronounced cyclonic-anticy clonic vorticity banding on Jupiter and Saturn suggests that the
constraints to conserve the integrals of motion effectively impede vorticity mixing. If the self-
organization hypothesis is valid for these planets, they must lie in the nonlinear regime. In Figure
3, we illustrate schematically how the theory might include these planets by plotting the entropy
S against global average kinetic energy F., ignoring for simplicity any dependence of S on I, or
I’,. By definition, (& S/0F)=—3; hence, the slope of any curve on this diagram is equal to -3.
Inspection of (3) shows that 3= By isa wavenumber squared and that the number of alternating
jets a planet will have scales with (51‘202)%- The strong-mixing solution plots as a straight line
with —3 equal to the slope of the full nonlinear solution at ¥/ = O. The solid curve in Fig. 3
represents the general dependence that S must have on F for a full nonlinear solution to (1 ) when
the globa circulation 1';= O (as it does in spherical geometry).” AS £ increases, 3 increases. Hence,
the number of jets (for fixed I';a%) scales with F, the global average kinetic energy measured with
respect to an inertial frame. A larger, faster rotating planet will have larger *' and more jets (for the
same 1',). As Fig. 3is drawn, Jupiter and Saturn would be predicted to have multiple alternating
jets. In future work, we will be particularly interested to determine whether the nonlinear regime
of the statistical mechanical theory predicts equatoria superrotation and multiple alternating jets

for these giant planets.
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Figure Captions

Fig. 1. Latitude profiles of mean zonal wind for the outer planets. Note that the velocity scale for

Saturn is offset relative to that for Jupiter.

Fig. 2. Barotropic jet structures derived in the strong mixing limit of the statistical mechanical the-
ory for Uranus and Neptune. a) Uranus: solid curve is the theoretical prediction from Eq.(4)with
n=3 e=(F-10%%/(0%*) = 0012 and | = [L,— 20a?)/(92a*) = 0.010. These values for ¢ and
1 were derived from the dashed curve. The dashed curve is a schematic interpolation/extrapolation
of Voyager-2 cloud-tracked wind data.”Solid circles denote cloud-tracked wind measurements’ and
wind velocity inferred near 5° latitude from radio occultation data.!! b) Neptune: solid curve is
theoretical prediction from Eq. (4) with ¢ = — 0.071 and ! = —0.079. Dotted curve is for same ¢
but 1 == —0.082. The solid circles are Voyager-2 cloud-tracked winds averaged in 1° latitude bins.'?

Fig. 3. Schematic entropy vs. energy diagram for outer planet barotropic models. 1 is global-
average Kinetic energy measured relative to the inertial frame and normalized with respect to
Jupiter. The solid curve represents the dependence of entropy on E expected for the full nonlinear
solution, ignoring any possible additional dependence of the entropy on L. or I',,. The dashed curve
represents the strong mixing solution. The slope of a curve on this diagram is proportional to the
square of the number of alternating jets comprising a zonal wind profile. For comparable global
average enstrophies on the outer planets, the diagram suggests that Jupiter and Saturn should have

more jets than Uranusand Neptune.
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