TRAJECTORY DESIGN USING
A DYNAMICAL SYSTEMS APPROACH
WITH APPLICATION TO GENESIS

K. C.Howell*, B. T. Bardent, R. S. Wilsont,and M. W.Lo!

A number of missions have recently been proposed that aim to take advantage of the growing
scientific interest in the region of space near libration points in the Sun-Earth system. In support
of missions that include increasingly complex trajectories and incorporate libration point orbits,
more efficient techniques and new philosophies for design must be considered. In this work, the
proposed GENESIS mission provides an opportunity to demonstrate the usefulness of dynamical
systems theory in initiating trgjectory design. From there, the methodology used to meet launch
and return constraints is presented. Additionally, a method for finding similar solutions with
launches in different months is applied to expand the launch opportunities. Finaly, the results
from alaunch period analysis are discussed.

INTRODUCTION

In astrodynamics, the complex missions envisioned for the upcoming decades will demand inno-
vative spacecraft trgjectory concepts. It is aso increasingly apparent that accomplishment of many
short- and long-term science and exploration goals will require a broader view that expands the
range of options available. Such is the case with the GENESIS solar wind sample return mission
proposed for NASA’s Discovery program. The intended science investigations create new demands in
mission design. The primary scientific goa is the collection of solar wind particles during an interval
of approximately two years. These particles will provide useful information regarding the chemical
and isotopic composition of the Sun. This information can then subsequently be used to validate
theories concerning the composition of several objects in the solar system, including planetary atmo-
spheres. To successfully collect these particles, the spacecraft must be beyond the magnetosphere of
the Earth. On the other hand, to help keep the mission operation costs low, it is desirable that the
spacecraft be as close to the Earth as possible. Thus, an Ljlibration point trgjectory is the idea
platform for this mission. In addition, the actual scientific analysis of the collected samples is to be
performed on Earth. Thus, the trgjectory must accommodate the added challenge of returning the
spacecraft (with its samples) from the vicinity of L1 to Earth and then reentering the atmosphere at
some set of specified coordinates. To further complicate the trajectory, a day side reentry is required.

While design capabilities for such missions have significantly improved in the last five years,
they are ill limited. Computational approaches to determine a nomina trgectory are essentialy
manual numerical searches in a regime where conic approximations are not adequate; standard tar-
geting and optimization strategies based on linear variational methods are sometimes difficult to
apply and frequently break down because of the nonlinearities and high sensitivities in the problem.
Conventiona tools simply do not incorporate any firm theoretica understanding of the multi-body
problem and do not offer the flexibility to take further advantage of the dynamical relationships in
producing alternative trajectory designs and, thus, new mission options.

Traditionally, tragjectory design has been initiated with a baseline mission concept rooted in the
two-body problem and conies. Design algorithms built on conics use trgjectory arcs from a limited
set of possible types, i.e., ellipses, parabolas, and hyperbolas. For missions such as GENESIS, a
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baseline concept derived from solutions in the three-body regime IS necessary. In this study, dynam-
ical systems theory is utilized to ¢ xplore solution behavior in phase space, and solut ion arcs that
may be IISCfill for designare isolated. These arcs are then patchied together to serve as the initial
guess for analgorithin to force a solution that mects specified launch and return constraints. Once
anominal solution is computed, other launch options are investigated.

GENERATING A FIRST GUESS: STABLE/ UNSTABLE MANIFOLDS

There are a number of different ways to compute an acceptable solution that will satisfy the
mission constraints. The usefulness and success of each approach will depend, in some fashion, on
the initial guess. Traditionally, the initial guess is constructed from known solutions in the two-
body problem (in the form of conic sections). Depending on the complexity of the problem and
the robustness of the algorithm, a patched conicsolution may suffice as a first guess. However, a
mission concept that involves the spacecraft spending a significant amount of time in the vicinity
of a libration point requires an initial guess based in the three-body problem. Unlike the two-body
problem, there are no general analytical solutions in the three-body problem; obtaining a first guess
in this region of space is difticult. However, a combination of analytical expressions and numerica
techniques from dynamical systems theory (DST) cau be used very effectively to initiate the design
process. Of course, without a general solution to this nonlinear problem, extensive numerical anal-
ysis is ill critically necessary. But clever, less costly solutions are available when knowledge of the
solution space is expanded and algorithms that employ DST and the dynamical relationships are
devel oped.

Restricted Problem of Three Bodies

Initially, the Sun and the Earth are assumed to be in circular orbits. While various interest-
ing solutions exist in the circular restricted three-body problem, those of particular interest here
are the periodic and quasi-per iodic solutions near the collinear libration points. The most general
type of mation in this region of space is the set of quasi-periodic Lissajous trgjectories. These three-
dimensional trajectories densely fill a torus that lies in the center manifold. Under certain conditions,
and with proper choice of in-plane and out-of-plane amplitudes, periodic halo orbits emerge. While
no complete analytical solution exists, halo orbits can be computed numerically using an analytica
approximation! as the first guess in a differential corrections procedure. Various examples of such
solutions are available in a number of three-body systems! 7.

Precisely periodic halo orbits do not exist in a more complex model, i.e., one that employs
ephemeris data for the positions of the Sun, planets, and moons. Rather, the quasi-periodic Lis-
sajous trgectories can be exploited; these solutions still remain bounded for the time frames of
interest. Computation of these trajectories, however, is nontrivial. A trial-and-error type numerical
search is possible, but this is highly inefticient and offers little or no control over the characteristics
of the final solution. A more efficient method combines analytical approximations with numerical
techniques for a fast and flexible algorithm’. Using the Richardson and Cary expansion? as an
initial guess, the algorithm in Howell and Pernicka’ produces the trajectory that is plotted in Fig-
ure 1. Shown here is an example of a Lissajous trgectory near the Li (interior) libration point in
the Sun-Earth/Moon barycenter three-body system. The dynamic model includes JPL ephemerides
(DE202) for the positions of the Sun, Earth, and Moon. Three planar projections appear with the
origin in each plot corresponding to the L1libration point. The three axes in the figure are defined
consistent with the rotating frame typicaly used in the restricted three-body problem. Thus, the
x axis is directed from the larger primary (Sun) to the smaller primmary (Earth/Moon barycenter),
the y axis is defined in the plane of motion of the primaries and 90° from the x axis, and the z axis
completes the right handed frame. The trgectory in the figure is characterized by an A; = 320,000

km with 4, = 230,000 km and A, = 745,000 km, where A iS the amplitude of motionin the ith
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Figure 1 Lissajous Trajectory

direction. The path originates on March 3, 2001 with a total flight time of approximately 1399 days
(corresponding to approximately 7.75 revolutions).

Dynamical Systems Theory

Determination of a nominal halo or Lissajous trajectory is only one part of the design process.
Transfer trgjectories to and from this region of space must also be considered. For any trajectory
problem, the ultimate goal is an analytical solution (or at least an analytical approximation); how-
ever, there has yet to be any significant progress in generating a closed form solution for transfers
to and from the vicinity of the libration points. The introduction of DST as a means of dynamical
anaysis and design in the three-body problem is motivated in part by the absence of analytical tools
for transfer trajectories. Prior to using this approach, a trial and error numerical search method was
most frequently used to design transfer trajectories. While this method has clearly been successful
for various missions, a more elegant and efficient procedure is desirable. Application of DST in the



circular restricted three-body proble yields a r¢Jatively fast method of generating a number of
different types of trajectories to and from halo orbits, e.g., transfers be tween Earth and halo orbits,
and transfers between halo orbits in the vicinity of different libration points®®~'2. This success has
led to the development of a utility based on DST to produce tile much needed first guess that initi-
ates the design process for transfer tragjectories in more complicated models. Anadditional benefit
of DST is a better understanding of the geometry of the phase space which therallows the mission
designer to obtain valuable iusight into the behavior of solutions in this particular region of space.

Investigations utilizing DST usually begin with specia solutions. These might include equilib-
rium points, periodic orbits, quasi-periodic motions, and homoclinic as well as heteroclinic motions.
Each of these solutions is an example of one of the fundamental models for the phase space, i.e,
invariant manifolds. An m —dimensional manifold is analogous to a two-dimensional surface in R™.
The concept of an invariant manifold can be simply described as follows: a collection of orbits that
start on a surface and stay on that surface for the duration of their dynamical evolution. This basic
definition can be used to characterize a variety of behaviors. In addition to the examples aready
mentioned, there exist invariant manifolds that asymptotically approach or depart other iuvariant
manifolds. These are called stable and unstable manifolds, respectively.

In the circular three-body problem, the stable and unstable manifolds associated with periodic
halo orbits have been the key to progress in the transfer problem (and the results can later be suc-
cessfully extended to a more complex dynamic model). Note that an asymptotic approach to the
target halo orbit renders a transfer to the halo orbit with no required insertion maneuver. While
the task of developing expressions for these nonlinear surfaces is formidable, it is aso unnecessary.
The computation of the stable and unstable manifolds associated with a particular halo orbit can
actually be accomplished numerically in a straightforward manner. The procedure used here is based
on the monodromy matrix (the variational or state transition matrix after one period of the motion)
associated with the halo orbit. This matrix essentially serves to define a discrete linear map of a
fixed point in some arbitrary Poincaré section. As with any discrete mapping of a fixed point, the
characteristics of the local geometry of the phase space can be determined from the eigenvalues and
eigenvectors of the monodromy matrix. These are characteristic not only of the fixed point, but of
the halo orbit itself.

The local approximation of the stable (unstable) manifold involves calculating the eigenvector of
the monodromy matrix that is associated with the stable (unstable) eigenvalue, and then using the
state transition matrix to propagate the approximation to any point along the orbit. The eigenvalues
are known to be of the following form*3#-12:

A>1, /\2:(1//\1)<1 , Ag=XM =1,
/\5 = /\g ; and |)\5| = l/\ﬁl =1 s

where s and As are complex conjugates. Stable (and unstable) eigenspaces, E* (E”) are spanned by
the eigenvectors whose eigenvalues have modulus less than one (modulus greater than one). There
exist loca stable and unstable manifolds, Wj5. and Wit ., tangent to the eigenspaces at the fixed
point, and of the same dimension!3.14, Thus, for a fixed point X defined along the halo orhit, the
one-dirneusional stable (unstable) manifold is approximated by the eigenvector associated with the
eigenvalue Az (A). First, consider the stable manifold. Let YY"’ denote a six-dimensional vector
that is coincident with the stable eigenvector and is scaled such that the elements corresponding to
position in the phase space have been normalized. This vector serves as the local approximation to
the stable manifold (W°). Remove the fixed point X#/ from the stable manifold to form two half-
mauifolds, W*" and 1V’ Each haf-manifold is itself a manifold consisting of a single trajectory.
Now, consider some point X,on W”Jr.lntegrating both forward and backwardin time from X,
produces we' Thus, conceptually, calculating a half-manifold can be broken down into two steps:
locating or approximating a point on we' , and numerically integrating from this point.



T 0 generate the stable manifold, an algor ithm has been employed that was developed to find
both the stable and unstable manifolds of a second order system!®. The algorit him, however, does
not possess any iuhereunt limit to the order of the system, and hasbeen used successfully here. Near
the fixed point X W' is determined, to first order, by the stable eigenvector ¥, The next
step is then to globalize the stable manifold. This can be accomplished by numerically integrati ng
backwards in time. It also requires an initial state that is on et but, not onthe hao orbit. To
determine such an iuitial state, the position of the spacecraft is displaced from the haloin the
direction of YW’ by some distance d,such that the new initia state, denoted as X!¥", is calculated
as

X = X1y 4, W (1)

Higher order expressions for X}¥* are available. but not necessary. The magnitude of the scalar d,
should be small enough to avoid violating thelinear estimate, yet not so small that the time of
flight becomes too large due to the asymptotic nature of the stable manifold. This investigation is
conducted with a nominal value of 200 km for d;. Note that a similar procedure can be used to
approximate and generate the unstable manifold.

Application to Mission Design

Many stable and unstable manifolds for various halo orbits have been numerically generated in
the circular problem to further understanding of the phase space. As an initial step in the design
process, various types of these solution arcs are put together to construct a trajectory. Such an
analysis produced the fundamental trajectory concept for GENESIS!2. Two issues emerge that im-
pact how the construction process proceeds. First, the initia approximation is ultimately used to
generate a result in the “rea” solar system; the methodology must accommiodate this transition.
Second, the design constraints may significantly influence the general size, shape, and overall char-
acteristics of the trajectory. These constraints are loosely considered for the initia guess; they are
tightly enforced in a later step.

Assumption of Periodicity. One of the fundamental characteristics that is exploited in applying
DST to halo orbits in the circular problem is periodicity. The periodicity, however, is destroyed
when movingto a dynamic model that includes ephemerides and other perturbations. Nevertheless,
DST can still be very useful in the more complex models. The shift to a more complex model is
facilitated by the selection of a quasi-periodic solution as the basdline orbit (even in the circular
restricted problem) rather than an orbit that is precisely periodic. With the loss of periodicity,
however, , two options are available for computations: 1) Compute stable and unstable manifolds for
the tori on which the quasi-periodic trgjectories are confined; 2) Assume that a Lissajous trajectory
is sufficiently close to periodic that the algorithm discussed previously still provides an adequate
approximation of the stable and unstable manifolds. Because the approximation from the previous
section is only first order, and because the primary purpose in using the manifolds is to supply a first
guess for some other numerical procedure, the second opt ion will suffice, i.e., assume a monodromy
matrix exists and perform the calculations accordingly.

The next step requires definition of a period of motion for approximation of the monodromy
matrix. For the simply periodic halo orbit, the period is (obviously) one revolution. In the case of
aLissajous trgectory, the motion more closely repeats after two revolutions. Because the motion is
not precisely periodic, it is necessary to define the “beginning” and the “end” of one period. In this
study, the ‘(beginning” of the period is defined at some specified xz-plane crossing, in the rotating
coordinates, that is above the ecliptic plane (i.e, positive 2 direction). The “end” of the period is
then defined at the zz-plane crossing two revolutions later. As an example, consider two revolu-
tions of the Lissajous trgjectory in Figure 1. Choose a period that originates at the Julian date
2452123.23 (near an zz-plane crossing). The duration of the period is 355.63 days which corresponds
to two revolutions of the motion in the y2 projection (see Figure 2). Consist ent with the procedure
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Figure 2 Assumed Period of the Motion for Generation of Stable Manifold

discussed previously, initial states X" to generate the stable manifolds are computed along the
corresponding two revolutions of the Lissajous.

Constraints. After generating the stable manifolds associated with various regions along the trajec-
tory within the defined ‘(period”, one particular region aong the two revolution Lissajous can be
identified that is associated with the stable manifolds that pass close to the Earth. Such a region
aong the Lissgjous is visudly indistinguishable from a similar region along a halo orbit!2. In this
region, there exists a stable manifold associated with a point very near the ‘(beginning” of the Lis-
sajous trgjectory; it passes the Earth a an altitude of 1112.1 kin and an inclination of 15.3 degrees
with respect to the equator. The date of the closest approach to the Earth is January 16, 2001
(within the desired time frame for the GENESIS launch). This serves as the initial guess for the
transfer from Earth to the Lissajous trajectory.

The return portion of the traectory, i.e, the transfer from the L,Lissajous trajectory to Earth
return, can be considered in much the same way. Recall that, since a day-side reentry is required, a
direct return from L is not feasible. The spacecraft must approach reentry from the side of the Earth
opposite the Sun. Therefore, an unstable manifold must be generated that approaches the L2 region
before returning to Earth. It must also depart the vicinity of L, only after sufficient time to perform
the science investigations has elapsed. Thus, further downstream along the same quasi-periodic
Lissajous orbit, two revolutions are defined to represent the new “period” for computation of an
appropriate unstable manifold. In this case, the period originates on Julian date 2452300.34, again
near an zz-crossing. The resulting two revolution interval is 356.03 days in duration. Investigation
of the unstable manifolds along different regions of the appropriate revolutions reveals a region where
the corresponding unstable manifolds have the characteristics necessary for the return. Specifically,
an unstable manifold is required that reaches L2 (comparable to a heteroclinic type motion); the
trajectory then must pass close to the Earth. One such path returns to the Earth at an altitude of
197.4 km with an inclination of .52.1 degrees and a declination of 35.8 degrees on August 21, 2003.
Combining the stable manifold as the launch segment, the Lissajous trajectory, and the unstable
manifold as the return segment provides the first guess for an end-to-end solution in the rea system
(thet is, the model using ephemerides) for the GENESIS nission. Note that the full model may also
include additional perturbations, such as solar radiation pressure. Each of the three trajectory arcs
are plotted in Figure 3 with an “0” marking the locations w’here the arcs are patched together.
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Figure 3 Initial Guess Generated Using Dynamical Systems Theory



MEETING LAUNCH/RETURN CONSTRAINTS

The next step is to use the initial guess obtained previously to begin the scarch for a viable
solution that rigorously mectsthe various constraints placedonthe trajectory. To accomplish this
task, the trajectory is decomposed into multiple segments. Each segment will be considered sepa-
rately, but will be analyzed similarly. Thus, the solution process for each segmnent is geuneralized.
In particular, both the launch and the return segments have specified constraints that must be met
near the Earth, and both segments have one end state! away from the Earth that is fixed in position
and time. So, the problem on each segment is formulated in terms of a fixed position and time as one
end state and some set of launch or return conditions near the Earth as the other end state. While
the launch and return constraints are specified in terms of different variables, the basic methodology
presented here works equally well for both cases.

Methodology

The methodology for enforcing the constraints (denoted generally as the scalar quantities ay)
and ensuring a viable solution is identical to that described in Wilson and Howell', and Howell
and Wilson!7. The solution is discretized into a series of patch points with states defined along
the trgjectory. To generate a reference, the patch point positions and times are temporarily frozen.
Between each pair of patch points, an arc is determined, essentially the solution to an n-body Lam-
bert problem between consecutive patch points. At this stage, the trgjectory has position and time
continuity; however, effective velocity discontinuities may now exist a each patch point (excluding
the initial and final states). The current estimate of the outgoing velocity state (V) at any patch
point n is compared with the incoming velocity state (V7 ) to compute the patch point velocity dis-
continuities, that is, AV, =V} —V,”. (Note that these patch point AV’s are represented in terms
of inertial coordinates. ) The subscript n denotes the patch point number ordered sequentially along
the trgjectory beginning with the initial state. The patch point states themselves are also expressed
using the n-subscript convention. By varying the patch point state positions and times in a specified
manner, the resulting AV’'S can be eliminated or significantly reduced, and the constraints ay can
be satisfied, while the desired characteristics of the solution are retained. It is significant that this
is a two stage procedure: position continuity, then simultaneous reduction of any effective velocity
discontinuities. (See the methodology in Howell and Pernicka’.)

To employ a differential corrections process to reduce the total cost, it is necessary to derive
the relationships between any AV;, or constraint ax, and the independent variables in the problem.
Since the trgjectory is described in terms of discrete patch point positions and times, it is convenient
to select these quantities as the independent parameters. Therefore, it is necessary to determine the
variation of each AV, and constraint @x due to variations in the patch point positions and times,
which have thus far been fixed at values determined during the initial approximation. A linear
relationship between these states can be represented in matrix form as

AV, OR;
{oamd=mn{ 50} @
where _ _
[2AX N oAV,
3”,‘ C')lj
[A{]: 031{ Q‘l& ] ! (3)
ok; at;

and Rjandt;denote the position and time corresponding to the j" patch point,. Notice that the
matrix [(M] (caled the State Relationship Matrix or SRM) is not square, that is, there are more
independent variables (£; and t;)than there are dependent variables (AV,, and ay). Sitwce this
system is underdetermined, there are infinitely many solutions, and it is therefore possible to esti-
mate the changes in the values of theindependent variables that are necessary to reduce AV, and



oy, and thus, the total cost. Note that if, through the addition of const raints, the system becomes
overdetermined, it is still possible t0 add flexibility and maintain the underdetermined nature hy
including additional patch points in the analysis. The number of patch points and their placement
is currently afunction of experience and numerical experimentation. Although the size of the SRM
can be large, this disadvantage is offset by the fact that state transition matrices (STMs), gener-
ated in conjunction with the various trajectory segments, are availahble and can be used to produce
expressions for each partia inthe matrix!6:1®,

From Wilson and Howell'®, the non-zero variations of AV}, with respect to the positions R; are
expressed

AAV, _
Yy - *Bn—ll, no (4)
an—l

AV, - -

ﬁ: = —Bnil,nAn«H,n + anll,n An—l, n (5)
3AVH -1
Z=2'n . 6
6Rn+1 n+ln ( )

where the STMS ([®n,n—1] and {$n+1,n]) surrounding the patch point n are written in terms of four
3 x 3 submatrices; for example,

oR oR,
[q)n.nvl] = 3;“_-;:1 81;/3’:1
——Th
aRn—l ‘9‘—/"»1
— An,n—l Bn,n -1 (7)
Cn,n—l Dn,n~1

The partials of AV, with respect to all other patch point positions can be shown to be zero, since
the velocities at any given patch point are related only to the trgectory segments surrounding it.
Similarly, the non-zero variations of AV, with respect to the times ¢ ; are evaluated as fpllowst®

OAV, - oy

5’[ ) = Bnil n ij—-l 1 (8)
n—

OAY, ~ - _ -

3]‘{ - ' Bn-:l,nAn+l,n V1T - Bn-ll,nAn~l,nVn ) (9)

0AV, 1 e

521+1 —Bﬂ-{l»l,n‘/rHl “ (IO)

Again, the partials of AV,, with respect to the other patch point times are zero.

In order to incorporate constraints into the solution process, it iS necessary to determine the
variations of «ay with respect to variations in the independent parameters. The launch constraints
for GENESIS include a departure from a circular parking orbit with an atitude of 200 krn and an
inclination of 28.5 degrees. The appropriate partials and the targeting process are described in detail
in Howell and Wilson!7, The return conditions are slightly more complex. The planned retrieval of
the spacecraft is to occur at the Utah Test ancl Training Range (UTTR). So, the spacecraft targets
specific coordinates on a rotating Earth, i.e., a declination of 40.6 degrees and a right ascension of
-114.0 degrees, corresponding to UTTR. The atmospheric part of the reentry trgectory will not be
considered in this analysis. Instead, an altitude of 125 km and a flight path angle of -7.9 degrees is
targeted. However, in this study, the flight path angle constraint is transformed into a constraint
on true anomaly (where a value of 344.5 degrees results in a flight path angle approximately equal
tothe -7.9 degrees that is required to reenter). The partial derivatives for each of these constraints



can be derived as follows, beginning with altitude.

Since dtitude is related to the independent parameters through the magnitude of the position
vector K, the scalar constraint can be writ ten as

) = ‘I_{‘ - [{des y (11)
where Ry is the desired dtitude. Thus, the variation is expressed in the form

O _ I
it ~ TR (12

Note that the partiadl with respect to time is zero

For declination and right ascension, it is desired to target a specific location on the rotating
(non-inertial) Earth. Define then a set of cartesian coordinates fixed in the Earth, such that Zz,;
is coincident at all times with the axis of rotation of the Earth and assumed constant. The Zof
unit vector is defined aong the Greenwich meridian and g,y completes the orthonormal triad. The
declination can thus be evaluated as

R .z
s1 dec) ——= 13
v (decl) (13)
where the symbol “-” represents the inner product. The right ascension is computed as
rt.asc = arctan (w) (14)
R- Ipf

As an approximation, we, the rotation rate of the Earthabout Z6f is assumed constant. Therefore,
the expression for declination is only a function of the position vector R, and the only non-zero
partial in the SRM is
. i ) pr b
Osin (decl) _ 1l I (decl) i
o IR 7
Although Zss is assumed constant, the directions of ZofandJss change with respect to the inertial
frame as the Earth rotates, so right ascension is a function of position R as well as time ¢. The
partial derivative of right asceusion with respect to R produces

drt.asc _ 1 290 (R'Qb!‘) C (16)
R 1o B FAVEY
[ R-.’tb!

(15)

_ (R - ibf)ﬁg} (R « doy) TIZ]

— "2 —— 17)
(R -2er)"+ (R - Gsy)
Similarly, the partial with respect to time is expressed
ort.asc 1 O (R-Guy (18)
ot - R-gsy 20t \ K- Tof '
[1 + ﬁfu}

From the previous assumption that w, is coustant, the time derivatives can be written in the forms

o X Oy R
_g_:i = ~wehpy  and _Z!;tT/ = Welvy (19
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so that, ult imately, the partial of right ascension with respect to time reduces to

ort.asc

ot

=W, . (20)
All tile necessary partialsinmatrix [M] are, thus, available.

As noted, the system is underdetermined, and the SRM in Equation (2) is not invertible. Out of
all possible changes in positions aud times, choose the set with the smallest Fuclidean norm, that

is,
6Rj T Ny 1 5A‘7n
= MM
{50 ) = @y {00} e
where the differential changes in AV, and ax are selected to reduce the total cost. This process is
iterative and continues until the cost is minimized to within some specifier tolerance.

Nominal Solution for January

The actual design can now proceed. As previously mentioned, the algorithm is currently formu-
lated to manage one end state that is free (perhaps near the Earth) and one end state that is fixed in
position and time, so it is necessary to consider the GENESIS trajectory in multiple segments. The
break points between segments depend on the various possible constraints for the mission. A natura
place to break the trajectory is at the set of maneuver points, i.e, AV'S. For this particular mission,
there is a requirement that there be a minimum time interval of 23 months without a significant
maneuver (due to potential contamination of the science experiments by the thrusters). Because of
this constraint, it is desirable that the Lissgjous orbit insertion (LOI) maneuver occur as soon as
possible. To accommodate this requirement, the location for L.OI is selected, somewhat arbitrarily,
to be at the first zz-plane crossing (below the ecliptic). This location also servesas a natural choice
to break the trajectory.

The first guess for the launch segment (the segment from the Earth to LOI) is taken directly
from the first part of the stable manifold that was generated previously. Of course, the complete
stable manifold extends beyond the specified LOI location by approximately one-half revolution.
The differential corrections process then yields a solution that is continuous in position and velocity
and departs an Earth parking orbit (with the specified conditions) on January 15, 2001.

The next segment of the trgjectory is the intermediate leg that includes the portion of the stable
manifold beyond LOI and the Lissajous trgjectory. The position and time at LOI is held fixed for
the intermediate leg. The corrections algorithm then quickly generates a smooth (in position and
velocity) trajectory segment from the LOI point to the beginning of the unstable manifold that was
previousy generated. At this point, there are velocity discontiuuities at both ends of this inter-
mediate section. However, without having met the return constraints, the specific magnitudes are
meaningless.

The final step in the process is blending the intermediate leg and the unstable manifold together
as the second segment of the trajectory. Recaling that a minimum of 23 months after LOI is
required before another maneuver, the next significant AV is placed at the zz-plane crossing after the
spacecraft leaves the vicinity of L1 along the unstable manifold (nearly mid-way between the Earth
and L,). In addition, another maneuver is allowed to occur near the L2 point. This provides some
flexibility before the final approach toward Earth, and it adds additional control over the trajectory.
To accommodate these maneuvers, deterministic AV'S must be possible at any patch point. In
Equation (21), rather than the usua proceduretoeliminate al Al “s, the velocity discontinuity at
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any patch point can be driven to a specified mag nitude, andthe corresponding, ditterential change is

“Avtlrv” - “AVHH

A

AV, =

(22)

where AV, is the desired deterministic maneuver.

With this modification, the second segment of the trgjectory is computed using the arcs discussed
earlier as an initial guess and allowing maneuvers at the specified locations. The final result of this
process is an end-to-end trgjectory with three maneuvers (the 1.01 maneuver and the two AV'’S in
the return segment) that meets al of the specified constraints on launch and return. The end-to-end
trgjectory is plotted in Figure 4 and is summarized in Table 1. It is important to note that this
solution is not necessarily optimal. In the current formulation, the location and time of the LOI
point are essentialy additional constraints on the solution introduced by the design process.

Table 1
GENESIS Trajectory Summary for Nominal January Launch

Event Date Altitude AV

(m/d/y) (km) (m/s)
Earth Launch | 01/15/01 200 | 3193.82
LOI 05/03 /a1 5.20
Maneuver 03//30//033 20.00
Maneuver 06/11/03 20.00
Reentry 08/21/03 125

Multiple Reentry Opportunities

As mentioned previously, the nomina strategy is to target a specified reentry state. However,
a decision can be made one day prior to the nomina reentry to abort. In this case, a maneuver
must be executed to raise perigee sufficiently to avoid reentering the atmosphere (a flyover perigee
specified to be approximately 200 km atitude). Once this is completed and the spacecraft reaches
perigee, another maneuver must be implemented for capt ure into a 16 day Earth-centered orbit.
When the spacecraft reaches the apogee of this orbit, another maneuver retargets the spacecraft
for a second reentry opportunity at the same coordinates (onthe rotating Earth). The reentry can
again be aborted one day prior to the second reentry pass. Thestrategy for a third and final reentry
opportunity is the same (witbout the need for a maneuver at perigee to capture). A close up of
the three reentry opportunities appears in Figure 5, with the symbol “o” indicating the maneuver
locations. The costs for both scenarios are summarized in Table 2.

Table 2
GENESIS Trajectory Summary for Additional

Seci 1d Reent vy

Reentry Opportunities
Third Reent

Event Date | Altitude | A} Date | Altitude [ AV

(m/d/y) (11Ys) || (111/dly) (km) | (m/s)
Deflection |08/20/03 7.59 || 09/06/03 4.87
Perigee 08/21/03 38.50 || 09/07/03 0.00
Apogee 08/30/03 28.32 || 09/15/03 11.50
Reentry 09/07/03 125 09/23/03 125
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Figure 4 Nominal GENESIS Solution with January 15, 2001 Launch
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Figure 5 Three Reentry Opportunities

EXPLORING OTHER LAUNCH OPPORTUNITIES

There are essentially two aspects involved in exploring the possibility of multiple launch oppor-
tunities. The first is the standard launch period analysis, where solutions are sought over a number
of clays surrounding the nominal launch. In addition, launch opportunities are also sought in other
months as well. Specifically, additional solutions are required with launches in the months of De-
cember 2000 and February 2001. The previous process can be repeated; it is straightforward and
individual steps are automated. However, another simpler approach can be used for this part of the
analysis.

Launch Opportunities in Other Months

often in the three-body problem, the key to successfully understanding a problem is to view
the shape of the solution in rotating coordinates. The significance of halo orbits, for example, is
apparent only in the rotating frame. In the case of GENESIS, preserving the shape of the solution
in the rotating frame is critical. To accomplish this, patch points along the nomina solution are
first transformed from the inertial frame to an appropriate rotating frame. The rotating frame of
choice is dependent on the location of the patch point. Specificaly, patch points that are near L,
are transformed to rotating libration point coordinates relative to L, those near L2 are transformed
to rotating i brat ion point coordinates relative to L2, and those near the Earth are transformed in to
Sun- Earth rotating coordinates relative to the Earth. Next, the date associated with the patch point
state is advanced 28 days for February or slipped 28 days for December (based on the approximate
period of the Moon in the respective rotating frame). The states are then t ransformed back into
inertial coordinates using the adjusted times. These inertial states then serve as the initial estimate
for the patch point states in the new months. This provides a sufficient first guess that quickly leads
to solutions in both months. Both solutions are summarized in Table 3.

Launch Period Analysis for Each Case
The strategy for the launch period analysis comes in part from the intuition gained ininvestigat-

iug the unstable manifolds, and also from experience. The primary issue that drives the methodology
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Table 3
GENESIS Trajectory Summary for December and February Launches

December February
[ Event Date 7| Altitude AV Date Altitude AV
(m/dly) (km) (m/s) || (n/d/y) (km) (in/s)
Earth Launch 12/18/00 200 | -3194.56 || 02/12/01 200 | 3193 .22
LOI 04/05/01 42.69 || 05/31/01 10.08
Maneuver 03/02/03 17.57 || 04/27/03 20.00
Maneuver 05/04/03 19.99 || 07/08/03 19.41
Reentry 07/24/03 125 | _ 09/18/03 125

is the sengitivity of the return portion of the trajectory. A very dight change in the state near L, can
result in escape from the vicinity of the Earth, or perhaps a return to Earth thousands of kilometers
off target. In addition, the position of the Moon as the spacecraft passes from L; toward L,can
have a significant impact. Therefore, the strategy for the launch period analysis begins by freezing
the return segment of the trajectory. More specifically, only the initia launch segment need be
analyzed. So, in addition to the usual launch constraints, an additional time constraint in the form
of a specified Julian date is placed on the launch state. ‘I’he AV budget for the trgjectory from
launch to the first reentry (excluding trajectory correction mancuvers)is assumed to be 90 m/s. The
duration of the launch period is then determined by computing solutions with varying launch dates
until the required AV at the LOI point, plus the other deterministic AV’'s in the various nominal
solutions, surpasses the 90 m/s total. The results of this analysis are presented in Figure 6 where the
nomina solutions for each month (computed in the previous section) are marked with the symbol
“0". The data for the curves iuthis figure are computedb yadjusting the launch dates at oneday
increments. However, there are no constraints that would prohibit continual launch opportunities
from the specified parking orbit throughout the launch periods in each of the three months.

Of additional interest here is the observation that two local minimums appear during each month.
In each case, the minimum with the larger magnitude corresponds to the dynamical situation where
the spacecraft passe closer -to the Moon than in any other solution option during that samemonth.
For most of the cases in al three months, the closest lunar encounter during the launch segment
ranges from a spacecraft-lunar distance of 300,000 km to 400,000 km. In the region of the higher
local minimum, the spacecraft passes much closer to the Moon; within 83,000 km for December,
106,000 km for January, and 124,000 km for February. For various reasons, it is specified that a
lunar encounter is to be avoided for GENESIS. Nonetheless, the Moon’s impact is clear, and it could
potentially be useful if a lunar encounter were incorporated into the launch strategy.

CONCLUSIONS

The goal of this study (aside from the actual mission design) isdernonstration of the advantages
to be gained by using dynamica systems theory in the design process. In particular, DST can be
directly applied to the more complex dynamical models in spite of the loss of periodicity of the orbit
relative to the libration point. In addition to the first guess utility, a great dea of insight can be
gained that is valuable throughout the design process. This is demonstrated in the formulation of
the launch period analysis. Also apparentis a certain degree of symmetry in the procedure to satisfy
launch and return constraints. In each of the cases jnvestigated, the successor the design, both in
meeting the mission constraints and in efficiency of the design process, is based on an improved
theoretical understanding of the three body problem.
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APPENDIX: A SECOND EXAMPLE

It is notable in this problemn that the solution space is complex and not yet fully explored. A sec-
ond example demonstrates a lower-cost alternative; perhaps more importantly, however, it suggests
some structure underlying a potential family of solutions. This second result is obtained using the
initial guess that was previously generated using DST. However, the reduction algorithm to meet the
launch/return constraints is implemented with a dlight variation. The LOI point is shifted further
back, i.e, closer to the launch by 9.5 days. With exactly the same launch and return constraints,
the solution converges to the trajectory in Figure A.1 and Tables A.1and A.2. The solution appears
very similar to the result in the previous example (Figure 4). However, the only significant AV is
the LOI maneuver. In the current formulation, the location and time of the LOI point is effectively
a congtraint. By shifting the point along the manifold, the algorithm converged to a solution with
a somewhat higher LOI AV but a zero-cost return segment.

It is also observed that the algorithin has adjusted the Lissajous to be dlightly larger (notably in
the A, direction). As seen in Table A.2, the cost for additional reentry opportunities is approximately
the same. This second baseline solution for January can now be relatively easily extended to the
other months. The new launch period analysis appears in Figure A.2, and is compared with that
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from the previous example. Assuming that the larger Lissajous trajectory S acceptable, the figure
illustrates continuous launch opportunities over the three months a a lower total cost. More in-depth
analysis is ongoing,.

Table Al
Trajectory Summary for Lower-Cost January Launch
Event Date Altitude AV
(m/d/y) (km) | (m/s)
Earth Launch | 01/15/01 200 | 3193.76
LOI 04/23/01 8.47
Reentry 08/19/03 125
Table A.2

Trajectory Summary for Additional Reentry Opportunities

Second Reentry Third Reentry

Event Date Altitude Date Altitude AV

(m/d/y) (km) (in/d/y) (km) | (m/s)
Deflection || 08/18/03 : 09/06/03 7.09
Perigee 08/19/03 09/07/03 0.00
Apogee 08/29/03 09/16/03 15.18
Reentry 09/07/03 125 09/25/03 125
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Figure A.1 Lower-Cost Solution with January 15, 2001 Launch
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