
TRAJECTORY DESIGN USING
A DYNAMICAL SYSTEMS APPROACH

WITH APPLICATION TO GENESIS
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A number of missions have recently been proposed that aim to take advantage of the growing
scientific interest in the regioo of space near libration points in the Surl-Earth  s~’stero. In support
of missions that inclucle increasingly complex trajectories and incorporate libration point orbits,
more efflcieut techniques and new philosophies for design must be considered. In this work, the
proposed GENESIS mission provides ao opportunity to demonstrate the usefulness of dynamical
systems theory in initiating trajectory design. Fkorn  there, the methodology used to meet launch
and return constraints is presented. Additionally, a method for finding siruilar solutions with
launches in different months is applied to expand the launch opportunities. Finally, the results
from a launch period analysis are discussed.

I N T R O D U C T I O N

In astrodynarnics,  the complex missions envisioned for the upcoming decades will demand inncr-
vative spacecraft trajectory concepts. It is also increasingly apparent that accomplishment of many
short- and long-term science and exploration goals will require a broader view that expands the
range of options available. Such is the case with the GEh’ESIS solar wind sample return mission
proposed for NASA’s Discovery program. The intended science investigations create new demands in
mission clesign. The primary scientific goal is the collection of solar wind particles during an interval
of approximately two years. These particles will provide useful information regarding the chemical
and isotopic composition of the Sun. This information can then subsequently be used to validate
theories concerning the composition of several objects in the solar system, including planetary atnm-
spheres. To successfully collect these particles, the spacecraft must be beyond the magnetosphere of
the Earth. On the other hand, to help keep the mission operation costs low, it is desirable that the
spacecraft be as close to the Earth as possible. Thus, an L1 libration  point trajectory is the ideal
platform for this mission. Itl addition, the actual scientific analysis of the collected samples is to be
performed on Earth. Thus, the trajectory must accommodate the acldecl challenge of returlling  the
spacecraft (with its samples) from the vicinity of L1 to Earth and then reentering the atmosphere at
some set of specified coordinates. To furthm  complicate the trajectory, a day side reentry is required.

While design capabilities for such missions have significantly improved in the last five years,
they are still limited. Computational approaches to determine a nominal trajectory are essentially
manual numerical searches in a regime where conic approximations are not adequate; standard tar-
geting and optimization strategies based on linear variational methods are sometimes difficult to
apply and frequently break down because of the nonlinearities  and high sensitivities in the problettl.
Conventional tools simply do not incorporate any firm theoretical understanding of the multi-body
problem and do not offer the flexibility to take further advantage of the clynamical  relationships in
producing alternative trajectory desigr]s and, thlls,  x[ew ruission  options.

Traclitionally,  trajectory design has been initiated with a baselirle mission concept rooted in the
two-body problem and conies. Design algorithms built  on rmuics  use trajectory arcs from a limited
set of possible types, i.e., ellipses, parabolas, and hyperbolas. For missiom  such as GENESIS, a
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GENERATING A FIRST GUESS: STADLE/ UNSTABLE MANIFOI,DS

There are a number of different ways to compute an acceptable solution that will satisfy the
mission constraints. The usefulness and success of each approach will depend, in some fashion, on
the initial guess. ‘IYaditionaliy,  the initial guess is constructed from known solutions in the two-
body problem (in the form of conic sections). I)epenrfing on the complexity of the probleru  and
the robustness of the algorithm, a patched couic solutiou  may suffice as a first guess. However, a
mission concept that iuvolwx the spacecraft spmldiug a significant amount of time in the vicinity
of a Iibration  point requires an initial guess based in the three-body prol.dem.  Unlike the two-body
problem, there are no general analytical solutions in the three-body problem; obtaining a first guess
in this region of space is difllcult.  However, a combination of analytical expressions and numerical
techniques from dynamical systems theory (DST) cau be used very effectively to initiate the design
process. Of course, without a general solution to this nonlinear problem, extensive numerical anal-
ysis is still critically necessary. But  clever, less costly solutions are available when knowledge of the
solution space is expanded and algorithms that employ DST and the dynamical relationships are
developed.

Restricted Problem of Three Bodies

Initially, the Sun and the Earth are assumed to be in circular orbits. While various interest-
ing solutions exist in the circular restricted three-body problem, those of particular interest here
are the periodic and quasi-pcv  iodic solutions near the colliuear  libration  points. The most general
type of motion in this region of space is the set of quasi-periodic Lissajous  trajectories. These three-
dimensional trajectories densely fill a torus that lies in the center manifold. Under certain conditions,
and with proper choice of in-plane and out-of-plane amplitudes, periodic halo orbits emerge. While
no ccmplete  analytical solution exists, halo ol-bits call be coruputect  numerically using an analytical
approxirnationl  as the first guess in a differential corrections procedure. Various examples of such
solutions are available in a number  of three-body systemsl’7.

Precisely periodic halo orbits do not exist in a more complex model, i.e., one that elnploys
ephemeris data for the positions of the Sun, planets, and moons. Rather, tllc qua.si-perioclic  Lis-
sajous  trajectories can be exploited; these solutions still remain  bounded for the time frames of
interest. Computation of these trajectories, however , is nontrivial. A trial-and-error type numerical
search is possible, but this is highly inef%cient and offers little or no control over the characteristics
of the final solution. A more efficient method combines analytical approximations with nulnerical
techrliqucs  for a fast and ffexible algorithm’. Using the Richardson and Cary  cxpansion2  as an
initial guess, the algorithul  in Howell and Perrlicka7  produces the trajectory that is plotted in Fig-
ure 1. Shown here is an example of a Lissajous  trajectory near  the L1 (interior) libration  point in
the Sun-Earth/Moon barycenter  three-body system. The dynamic model includes JPL ephemerides
(DE’202)  for the positions of the Sun, Earth, and Moon. Three  pla~lar projections appear with the
origin in each plot corresponding to ttw L1 libratiou  point. The three  axes in the figure are defined
consistent with the rotating frame typically used in the restricted three-body problem. Thus, the
~ axis is directed f[om the larger priniary  (Sun) to the snlaller  prilllary  (Earth/Moon baryceuter),
tllc y axis is defined in the plane of motion of the primaries and 90° from the x axis, arid the z axis
completes the right handed frame. The trajectory in the figure is characterized by an Az = 320,000
krrl with .41 = 230,000 kru and Au = 745,000 km, wh~~rc A ~ is the alllplitllde  of xnotion ill the it”
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Figure 1 Lissajous Trajectory

8

direction. The path originates on March 3, 2001 with
(corresponding to approximately 7.75 revolutions).

Dynamical Systems Theory

a total flight time of approximately 1399 days

Determination of a nominal halo or Lissajous  trajectory is only one part of the design process.
Trarlsfer  trajectories to and from this region of space must also be considered. For any trajectory
problem, the ultimate goal is an analytical solution (or at least  an analytical approximation); how-
ever, there has yet to be any significant progress in generating a closed form solution for transfers
to and from the vicinity of the libration  points. The introduction of DST as a means of dynamical
analysis and design in the three-body proble~n is motivated in part by the absence of analytical tools
for transfer trajectories. Prior to using this approach, a trial and error  numerical search method was
most frequently usc!d to design transfer trajectories. While this method b.as clearly  been successful
for various missions, a more elegant and cfflcic[lt [)rocedure is desirable. Application of DST in the
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and trmlsfcrs  between  halo orl)its irl ttic vici[lity of (Iiffelc[lt  libriltiotl  [)oi[ltsL’N–  12. This succcss has
led to the (lcwek~p~lmnt  of a utility based orl DSrl’ to ~)roduce  tile Itlucll  necdc’(1 first guess tlmt initi-
ates the desiglL process for transfer trajectories in lr]ore  collll)licate(l  lllodels. Arl a(lditiorial  benefit
of DST is a better urderstmlding of the geometry of t]le pll:L+e Slmce wllic]l tll[!l I allows the Iuission
desiguc!r  to obtai[l  valuable irlsigllt into the behavior of solutions in this particular region of space.

Iuvc!stigations utilizing DST usually begin with special solutiorls. Thcso lnight  include equilib-
rium points, periodic orbits, cluasi-periodic  motions, aucl homocliuic  as well as het~!roclinic  motions.
Each of these solutions is an example of one of the fundamental models for the phase space, i.e.,
i(lvariant  manifolds. An ~n –dinlcnsiollal  xnanifold is analogous to a two-dirncuisional surface in R“.
The concept of an invaria~lt  manifold can be simply described as follows: a collection of orbits that
start on a surface and stay on that surface for the duration of their dynamical evolution. This basic
definition can be used to characterize a variety of tmhaviors.  In addition to the examples already
mentioned, there exist invariant manifolds that asymptotically approach or depart other illvariant
manifolds. These are called stable and unstable manifolds, respectively.

In the circular three-body probleul,  the stable and unstable manifolds associated with periodic
halo orbits have been the key to progress in the transfer problem (and the results can later be suc-
cessfully extended to a more complex dynamic model). Note that an asymptotic approach to the
target halo orbit renders a transfer to the halo orbit with no required insertion maneuver. While
the task of developing expressions for these nonlinear surfaces is formidable, it is also unnecessary.
The computation of the stable and unstable nlallifolds  associated with a parLicular  halo orbit can
actually be accomplished numerically in a straightforward manner. The procedure used here is based
on the monodromy matrix (the variational or state transition matrix after one period of the motion)
associated with the halo orbit. This matrix essentially serves to define a discrete linear map of a
fixed point in some arbitrary Poincar6  section. As with any cliscrete mapping of a fixed point, the
characteristics of the local geometry of the phase space can be cletermined  from the eigenvalues  and
eigenvectors of the monodromy matrix. These are characteristic not only of the fixed point, but of
the halo orbit itself.

The local approximation of the stable (unstable) manifolcl  involves calculating the eigenvector  of
the monodromy matrix that is associated with the stable  (unstable) eigenvalue,  and then using the
state transition matrix to propagate the approxi]llatiorl  to ally point along the orbit. The eigenvalues
are known to be of the following forn14’5’8-12  :

where AS and ~6 are complex conjugates. Stable (and unstable) eigenspaces,  Es (E”) are spanned by
the eigenvectors  whose eigenvalues have modulus less than one (modulus greater than one). There
exist local stable and unstable manifolds, JV~C and Wl&, tangent to the eigenspaces  at the fixed
point, and of the same dimension 13,14.  Thus,  for a fixed pOiIlt X*J defined along the halo orbit, the
one-dirneusional stable (unstable) manifold is approximated by the eigenvector associated with the
eigenvalue  J2 (A l). First, co[lsidcr the stable ruanifold. Let ~~{” denote a six-dimensional vector
that is coincident with the stable  eigenvector  and is scaled sucli that the elements corresponding to
positiorl  in the phase  space have been normalized. This vector serves M the local approximation to
the stable  manifold (W g). Remove the fixed poi~lt .~” from the stable  rna]lifold to form t~vo half-

ma[lifolds,  W’+ and IV’- Each half-manifold is itself a nlallifold consisting of a single trajectory.
Now, consider sonle point .~O orl IV’+. Iutegrati[lg  botl] forward arid back~varxl itl time fro[n ~~0
produces W’+ Thus,  concel)tually,  calculating a ilalf-llm~lifold call be brokerl dowIl into two steps:
locatillg  or a~)proxirnating a ~)oillt otl [t’S+ , and Ilu[llerically integratirlg  frolll this point.
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Ilot possess aIIy irlherent  Iirrlit  to t,llc ord~!r of the systrr[l,  arl(l lias Ix’cm  used successfully here. Near
ttle tixrxl [willt, .Yf[, tl~’+ is dctcrr[lirle(l,  to first or(le[, t)y t,tw stal)lc eig(’rlvwt,or ~tt”. ‘1’lie rlext
step is then to globalize  the stable  miirlifold. l’his  car[ Ix! ;l(’(orrll)listlccl  by ri(ltllmically irltegrat,  ing
I)ackwards irl tinle.  It also rcquirvs arl irlitiid state that is t)rl If”+ but, not orl tile halo orl)it. To
detfxrninc  sucl~ ari irlitial  state, t}le positiorl of tllc S[)acmraft  is  displaced from the lla]o ir] the
direction of YW’” by some distance d. such that the rlcw initial stat(!, denoted :LS .Y~t”, is calculated
as

(1)

Higher order expressions for .~~~” are available. but not rlecessary. The  rnag[litude  of the scalar d=
shoulcl be small enough to avoid violating tlle linear  estinlate, yet not so small that the time of
flight becomes too large due to tile asymptotic llature of tile stable manifold. This investigation is
conducted with a nominal value of 200 km for rfs. Note that a similar procedure can be used to
approximate and generate the unstable marlifolrt.

Application to Mission Design

Many stable and unstable marlifolds for various halo orbits have been numerically generated in
the circular problem to further understanding of the phase space. As an initial step in the design
process, various types of these solution arcs are put together to construct a trajectory. Such an
analysis produced the fundamental trajectory concept for GENES  IS12. Two issues emerge that im-
pact how the construction process proceeds. First, the initial approximation is ultimately used to
generate a result in the “real” solar system; the methodology must acconmlodate  this transition.
Seccmd, tlledesigrl collstrairlts  nlaysigrlificarltly  itlflue[lce  tllegerleral size, shape,  and overall char-
acteristics of the trajectory. These constraints are loosely considered for the initial guess; they are
tightly enforced ill a later step.

Assumption o~I’erzorfzczty.  one of the fundamental characteristics that is exploited in applying
DST to halo orbits in the circular problem is perioclicity. The periodicity, however, is destroyed
when movingto a dynamic model that inclrrdc!s  ephemerides and other perturbations. Nevertheless,
DST can still be very useful in the more complex moclels. ‘1’he shift to a mcmc! complex model is
facilitated by the selection of acluasi-periodic  solution as the baseline orbit (even in the circular
restricted problem) rather than an orbit that is precisely periodic. With the loss of periodicity,
however, twooptiorlsa reavailablef orcon~putatiorls: 1) Compute stable andunstable  manifoldsfor
the tori on which thequasi-periodic  trajectories areconfiuecl;  2) Assume that aLissajous trajectory
is sufficiently close to periodic that the algorithm discussed previously still provides an adequate
approximation of the stable and unstable manifolds. Because the approximation from the previous
section is only first order, and because the primary purpose in using the manifolds is to supply a first
guess for some other numerical procedure, the second opt ion wrill suffice, i.e., assume a monodromy
matrix exists and perform the calculations accord il]gly.

The next ste~) requires definition of a period of motion for approximation of the monodromy
matrix. For the simply periodic halo orbit,  the ~Jeriod is (obviously) one revolutio~l.  In the case of
a Lissajous  trajectory, the motion more closely repeats after two revolutions. Because the nlotion  is
not precisely periodic, it is necessary to define the “beginnirlg” and the “end” of one period. In this
study, the ‘(beginning” of the period is clefined  at some specified ~z-plaue  crossing, in the rotating
coorclinates,  that is above the ecliptic plane (i.e., positive 2 direction). The “end” of the periocl  is
therl defined at the ~z-plar]e  crossing two revolutions later. As an example, consider two revolu-
tions of tile Lissajous  trajectory in Figure 1. Choose a period  that origirlates  at the Julian date
2452123.23 (near an zz-~)lane crossing).  The duration of the Imrio(l  is 355.63 days wliich corres[)orlds
to two rel’olutious  of tllc rllotion irl tile yz I)roject  iorl (sw I;igllre 2). Consist  erlt Ivitll tile ~)rocc(lure
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Figure 2 Assumed Period of the Motion for Generation of Stable Manifold

discussed previously, initial states ~OW’ to generate the stable manifolds are computed along the
corresponding two revolutions of the Lissajous.

Constraints. After generating the stable manifolds associated with various regions along the trajec-
tory within the defined ‘(period”, one particular region along the two revolution Lissajous  can be
identified that is associated with the stable manifolds that paw close to the Earth. Such a region
along the Lissajous is visually indistinguishable from a similar region along a halo orbit  12. In this
region, there exists a stable manifold associated with a point very near the ‘(beginning” of the Lis-
sajous  trajectory; it passes  the Earth at an altitude of 1112.1 k[n and an inclination of 15.3 degrees
with respect to the equator. The date of the closest approach to the Earth is January 16, 2001
(within the desired time frame for the GENESIS launch). This serves as the initial guess for the
trarlsfer  from F,arth  to the Lissajous  trajectory.

The return portion of the trajectory, i.e., the transfer from the L 1 Lissajous  trajectory to Earth
return, can be considered in much the same way. Recall that, since a day-side reentry is required, a
direct return from LI is not feasible. The spacecraft must approach reentry from the side of the Earth
opposite the Sun. Therefore, an unstable  manifold must be .gcnrxatml that approaches the Lz region
before returning to Earth. It must also depart the vicinity of L1 only after sufficient time to perform
the science investigations has elapsed. Thus, further downstream along the same quasi-periodic
Lissajous  orbit, two revolutions are defined to represent the new “period” for computatiorl  of an
appropriate unstable manifold. In this case, the period originates on Julian date 2452300.34, again
near an xz-crossing.  The resulting two revolution interval is 356.03 days in duration. Investigation
of the unstable manifolds along different regions of the appropriate rcwolutions reveals a regiorl where
the corresponding unstable ruanifolcls have the characteristics necessary for the return. Specifically,
an unstable manifold is required that reaches Lz (comparable to a hetcroclinic  type motion); the
trajectory then must PMS close to the Earth. One such path returns to the Earth at an altitude of
197.4 km with an inclination of .52.1 clcgrecs arid a declirlation  of 35.8 deglees  on August 21, 2003.
Cornbiniug  the stable manifold as the launch seglncnt,  the Lissajous  trajectory, and the unstable
ruanifold  as the return seg[llent provides tllc first guess for arl eud-to-erld  solution in the real system
(that is, the rnoclel using e~)llenwrides)  for the GENESIS rnissiorl. Note that the full ruodel nlay also
include additional Pr!rturbatious,  such as solar radiatiorl  pressure. F,ac}l of tt~e three trajectory arcs
arc plotted irl Figure 3 with ari “o” markirlg the locatiolw  w’here th~~ arcs ar~: Imt,clled  togctl~er.
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MEETING LAUNCXI/IIETURN  CONS’TItAIN’TS

Tile nex t  s t ep  i s  t o  Ilsc ttlc initial  gums Obtili[l(:(l ~Jrf’vit)usly to Ix!gi[l tile S(’ilt’~11 for a Vial)lc
solution that rigorously nltwt,s tile various constrai[lts  l)lit(’(’(1  011 ttle trajectory. To acrwtnl)lish this
task, the trajectory is clecorn~)osed into multiple scglrie[lts. F]ach segr[le~lt will be corlsider~d sepa-
rately,  but will be analyzed si[nilarly. Thus, the solutiotl  ~)rocess for each seg[rm~lt is ge[leralized.
In particular, both the launch and the return scg[[lcrlts  have specified constraints that nlust  be rrlct
near the Earth, and both segments have one et)d state! away from the Earth that is fixed ill position
and time. So, the problem on each segment is formulated in terms of a fixed positic)n and time as one
end state and some set of launch or return conditions near the Earth as the othel end state. While
the launch and return constraints are specified in terms of different variables, the basic methodology
presented here works equally well for both cases.

Methodology

The methodology for enforcing the constraitlts  (denoted generally as the scalar quantities ak)
and [!nsuring  a viable solution is identical to that described in Wilson and Howe1116,  and Howell
and Wilson  17. The solution is discretized into a series of patch points with states defined along
the trajectory. To generate a reference, the patch point positions and times are temporarily frozen.
Between each pair of patch points, an arc is determined, essentially the solution to an n-body Lam-
bert problem between consecutive patch points. At this stage, the trajectory has position and titne
continuity; however, effective velocity discontinuities may now exist at each patch point (excluding
the il[itial  and final states). The current estimate of the outgoing velocity state (~,~) at any patch
point n is compared with the incoming velocity state (~n-  ) to compute the patch point velocity dis-
continuities, that is, AV,,  = VT~ – V,l–. (Note that these patch point At7’s are represented in terms
of inertial coordinates. ) The subscript n denotes the patch point number ordered sequentially along
the trajectory beginning with the initial state. The patch point states themselves are also expressed
using the n-subscript convention. By varying the patch point state positions and times in a specified
manner, the resulting AV’S can be eliminated or significalitly  reduced, ancl the constraints a~ can
be satisfied, while the desired characteristics of the solution are retained. It is significant that this
is a two stage procedure: position continuity, thcxl simultaneous reduction of any effective velocity
rfiscontinuities.  (See the methodology in Howell and Pernicka7.)

To employ a differential corrections process to reduce the total cost, it is necessary to derive
the relationships between any At<, or constraint Ok, and the independent variables in the problem.
Since the trajectory is described in terms of discrete patch point positions and times, it is convenient
to select these quantities as the independent paratoeters. Therefore, it is necessary to determine the
variation of each A~,,  and constraint ~k due to variations in the patch point positions and times,
which have thus far been fixed at values determined during the initial approximation. A linear
relationship between these states can be represented in matrix form as

{~g’’}=p,]{y} , (2)

(3)

and }~j ancl tj derlote  the position and time corrml)onding  to the jtt’ patc]l  point,. Notice that tile
matrix [A4] (called the State ltelationship  Matrix or SRN1)  is not square, that is, there are more
independent variables (~j and tj) than there MC dwerldctlt variabks (A~{,  arid nk).  Sir Lcc t h i s
system is underdeterrnine(l,  there  are irlfinitely rrlilrly Solut,ioIls, arid it is therefore possible to csti-
Inate  the changes in the values of tile i~ldrq)en(l(!~lt  variables that are necessary to reduce A~r, and
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[Yk, i}rl(l t}llls, t}lt~ total {x)st. Note that if, ttlrwugll tile a(lflit it)~l of collst raitlts, tll(’ Systelll b(,(’OIIlrw
ov(:r(l[:tc[-frli[lc(l,  it is still ~mssible  to wld fk!xihility  slid nlaintaill  tlw uIlclf’rclc’t(,llllillt:[l  natrlrw h y
itlcluditlg  additional patch points in the analysis. The nunlt)et  of patch points aII(l their pltrccrnellt
is currently a frrilction of experience and nut[~crical exlwrirtlentatiorl.  Although the sim of tile SRM
can be large,  this disadvantage is offset by the fact that state transition nlatriccs  (STMS), gener-
ated in cor)junction  with the various trajectory scgrllerits, are availal)le and can trc usecl to produce
expressions for each partial irl the nlatrix16”8.

From Wilson and HOWC1ll 6, the non-zero variations of A~’,, with respect to the positions Rj are
expressed

r9AVn _~-1 (4)
3Rr,_~  = n–l,  n ~

r9AK,
–B;:l,,,A

8R: ‘
,L+l,,, +B,;!l,,, A,,–l, n , (5)

8AC,

3R,,+7
= %;1,,, . (6)

where the STMS ([@n,n–l] and [1)7,+1,,,]) surrourlcfing  the patch point n are wlitten in terms of four
3 x 3 subrnatrices;  for example,

[@n,n_,] = [z %1
[

A n,n-1 II— 71,7L  -.1
— 1C,,,,L_l Dn,,,_l “ (7)

The partialsof AVn with respect toall other patch point positions can be shown to he zero, since
the velocities at any given patch point are related only to the trajectory segments surrounding it.
Sinlilarly,th  enon-zer  ovariationsofAl?,  with respect  tothetirnestj  areevaluated as follows16

~AV,,——
at,,_l ~_l ,, V;..l ,= fj-1 (8)

19AK,—r .
~R,, ‘~Jl,nA ,L+l,,, ~> – II,;:l,nA,,_l,,l~n-  , (9)

8A V.——
tlt,,+l = r,+l,nz; 1 “

_~-1 (lo)

Again, the partials of AV,,  with respect to the other patch point times are zero.

In order to incorporate constraints into the solution process, it is necessary to determine the
variations of a~ with res~~ect to variations in the illdependerlt  parameters. T’he launch constraints
for GENESIS include a departure from a circular parking orbit with an altitude of 200 krn and an
inclirlation  of 28.5 degrees. The appropriate partials and the targeting process are described in detail
in Howell and Wilson  17. The return conditions are slightly more complex. The planned retrieval of
the spacecraft is to occur at the Utah Test ancl Training Ra[\ge (UTTR).  So, the spacecraft targets
specific coordinates on a rotating Earth, i.e., a declination of 40.6 degrees and a right ascension of
-114.0 degrees, corresponding to UTTR. The atmospheric part of the reentry trajectory will not be
cor~sidered in this analysis. Instead, an altitude of 125 k[n and a flight path angle of -7.9 degrees is
targeted. However, in this study, the flight path mlgle constraint is transformed into a constraint
on true anomaly (where a value of 344.5 deg[ees results in a flight path angle al)proxirnatcly  equal
to tile -7.9 degrees t}lat is required to remlter).  Tht, partial (1[’rivatives  for each of these constraints

9



Ca[l b[! {Icrivwl  as folhnvs, l)t’~irltli]lg  wit,ll a l t i t u d e .

Since altitude is relat(xl to the itldepcnderlt  parmlwtcrs  through the nlag[litude  of tht! lJosit,ion
Vector 1{, the scalar  (X)llStlaillt  (YLII h(: Writ, t(?ll ;1S

wllm-e Rde~ is the dc!sired  altitude. Thus, the var-iatiorl  is expressed in the forlt L

(12)

h’ote that the partial with respcxt  to time is zcrc)

For declination and right ascension, it is desired to target a specific locatic}n on the rotating
(non-inertial) Earth. Define then a set of cartesian  coordinates fixed in the Earth, such that i~f
is coincident at all times with the axis of rotation of the Earth and assumed constant. The  ibf
unit vector is defined along the Greenwich meridian and y~f completes the orthonormal triad. The
declination can thus be evaluated as

R . .&j

“r’ ‘dcc~) = Iq ‘

where the symbol “.” represents the inner product. The right asscensiou is corriputed  as

(13)

(14)

As an approximation, we, the rotation rate of the Fjarth about ~bf is assumed constant. Therefore,
the expression for declination is only a function of the position vector R, arid the only non-zero
~artial in the SRM is

[

Osin (dccl) = 1 .7.
-,

.
8R 1

— ‘b’ - ‘i” ‘deC*) ~ “lR/ (15)

Although ~bf is assumed Constarlt, the directions of 2bf anti ~bf change with respect to the inertial
frame as the Earth rotates, so right ascension is a function of position R as well as time t. The
partial derivative of right ascerlsion with respect to R produces

8Tt.CISC 1 ()8 R.ybf._ =—
8R

[
R.y> 2 aR ~ ‘1

(16)
1 + ~+,;

= (~ “  ~bf) ii; -  (R “  i~f) ‘:;

@i b,)2+ @j bf)2 ‘

Similarly, the partial with tespect to time is ex~)ressed

(17)

F’roul the ~]revious  assumption that U, is co[lstant,  the time  derivatives can be written in tile forms

(19)



so ttlil.t,  Illt, illli!t(!ly,  t,tl(! I):irtial of  rip,l~t ascmlsio[k  wit,ll [[’sl)(’(”t to t.ir[l[, 1(’(IIIc[’s  to

(20)

All tile necessary partials itl nmt,rix [M] arc,  thlls,  available’.

As noted,  the system is ullclcr(leterrtlitlecl,  and the SRhI il~ Equation (2) is [lot invertible. Out of
all possible changes in positions allcl times, choose the set with the smallest F.uclidean norln,  that
is,

{ y’ } = [fw” ([W[W7’)’ * { 6:3 } ,
)

(21)

where the differential changes in A% and cr~ are selected to reduce the total cost. This process is
iterative and continues until the cost is minitnized  to within soIne specifier tolerance.

Nominal Solution for January

The actual design can now proceed. As previously mentioned, the algorithm is currently fornm-
lated to rnauage  one end state that is free (perhaps near the Earth) and one end state that is fixed in
position and time, so it is necessary to consider the GENESIS trajectory in multiple segments. The
break points between segments depend on the various possible constraints for the mission. A natural
place to break the trajectory is at the set of maneuver points, i.e., AV’S. For this particular mission,
there is a requirement that there be a minimum time interval of 23 months without a significant
maneuver (due to potential contamination of the science experiments by the thrusters). Because of
this constraint, it is desirable that the Lissajous orbit insertion (LOI) maneuver occur as soon as
possible. To accommodate this requirement, the location for 1,01 is selected, somewhat arbitrarily,
to be at the first zz-plaue crossing (below the ecliptic). This location also ser~ws as a natural choice
to break the trajectory.

The first guess for th[! launch segment (the segmcmt from the Earth to 1,01) is taken directly
fronl the first part of the stable manifold that wras  generated previously. Of course, the complete
stable manifold extends beyond the specified LOI location by approximately one-half revolution.
The differential corrections process then yielcls a solution that is continuous in pc)sition and velocity
and departs an Earth parking orbit (with the specified conditions) on January 15, 2001.

The next segment of the trajectory is the intermediate leg that includes the pcmtion of the stable
manifold beyond LOI and the Lissajous trajectory. The position and time at LOI is held fixed for
the intermediate leg. The corrections algorithm then quickly generates a smooth (in position and
velocity) trajectory segment from the LOI point to the beginning of the unstable manifold that was
previously generated. At this point, there are velocity discontiuuities at both ends of this inter-
mediate section. However, w’ithout having met the return constraints, the specific magnitudes are
meaningless.

The final step in the process is blending tllc illter[nediate  leg and the unstable manifold together
as the second segment of the trajectory. Recalling that a minimum of 23 months after LOI is
required before another ma[leuver,  the next si.gnificmlt AV is I)laced at the x.z-plaue crossing after the
spacecraft leaves the vicillity  of L1 along the unstable manifold (nearly mid-way between the Earth
and L1 ). In addition, anc)ther maneuver is allowed to occur near the LQ point. This provides some
flexibility before the final approach toward Earth, and it adds additional control over the trajectory.
To accommodate these xnaneuvers, deter[ninistic  AV’S nlllst be possible at any patch point. In
Equation (21), rather than the usual l)rocedurr  to elinlinate  all AI “s, tile velocity discontinuity at
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ally  lMtCll  ~xjirlt, Ca[l }W (Irii’(:[1  to a slx:cific(l [Ililg  Ilit,ll(l(’
. .

, iLII(l  tlI(:  f(J[l(!s~Jtjrl{lirl~ <Ilff(,[crlt)ial (:}L;utgc  is

(22)

whet  e A l{fe~ is th[! dcsirul dctf!rmirlistic [nalleuver.

With this modification, the second segment of the trajectory is computed using the arcs cliscussecl
earlier as an initial guess and allowing maneuvers at the specified locations. ‘1’hc  final result of this
process is an end-to-end trajectory with three maneuvers (the 1.01 maneuver and the two AV’S in
the return segment) that meets all of the specified constraints on launch and return. The end-t-end
trajectory is plotted in Figure 4 and is summarized in Table 1. It is important to note that this
solution is not necessarily optimal. In the currcllt  formulation, the location and time of the LOI
point are essentially additional constraints on the solution introduced by the clesign process.

Table 1
GENESIS Trajectory Summary for Nominal January Launch

1
Ehwnt

Earth Launch
1,01

Maneuver
Maneuver
Recntrv

Date I Altitude

W%w
““L05/03/01

03/30/03
06/11/03
08/21/03 125

(ll:;
3193.82

5.20
20.00
20.00

Multiple Reentry Opportunities

As mentioned previously, the nominal strategy is to target a specified reentry state. However,
a decision can be made one day prior to the nominal reentry to abort. In this case, a maneuver
must be executed to raise perigee suflicicntly  to avoid reentering the atmosphere (a flyover perigee
specified to be approximately 200 km altitude). Once this is completed and the spacecraft reaches
perigee, another maneuver must be implemented for caj~t ure into a 16 day Earth-centered orbit.
When the spacecraft reaches the apogee of this orbit, another maneuver retargets the spacecraft
forasecond reentry opportunityat  the samecoordinates  (onthe rotating Earth). Therecntry  can
again  beaborted  orleday ~~riorto tllesecor~d  recrltry1~&ss.  Thcstrategy for a third and firralrecntry
opportunity is the same (witbout the need for a maneuver at perigee to capture). A close UP of
the three reentry opportunities appears in Figure 5, with the symbol “o” indicating the maneuver
locations. Thecosts  for both  scerlarios aresuItlt[larized  i~l Table2.

Table 2
GENESIS Trajectory Summary for Additional Reentry Opportunities

rEvent

EDeflection
Perigee
Apogee
Reentry

Sect
Date

(nl/d/y)
08/20/03
08/21/03
08/30/03
09/07/03

Id Reen{
Altitude-

125

r’
A\/’

(111/s).—
7.59

38.50
28.32

Third Reent
Date

(111/d/y)
09/06/03
09;07;03
09/15/03
09/23/03

Altitude-
(kn~)_

125

(n:;
4.87
0.00

11.50
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Figure 4 Nominal GENESIS Solution with January 15, 2001 Launch
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Figure 5 Three Reentry Opportunities

EXPLORING OTHER LAUNCH OPPORTUNITIES

l’here  are essentially two aspects involved in exploring the possibility of Inultiple  lauuctr oppor-
tunities. The first is the standard launch period analysis, where solutions are sought over a number
of clays surrounding the nominal launch. In addition, laurrch  opportunities are also sought in other
months as well. Specifically, additional solutions are required with launches in the months of De-
cenrber  2000 and February 2001. The previous process can be repeated; it is straightforward and
individual steps are autonlated. However, another simpler approach can be used for this part of the
analysis.

Launch Opportunities in Other Months

often in the three-body problem, the key to successfully understanding a problem is to view
the shape of the solution in rotating coordinates. The sigllificance of halo c~rbits, for example, is
apparent only in the rotating frarue. In the case of GENESIS, preserving the shape of the solution
in the rotating frame is critical. To accomplish this, patch points along the nominal solution are
first transformed from the inertial frame to an appropriate rotating frame. The rotating frame of
choice is dependent on the location of the patch point. Specifically, patch points that are near L1
are transformed to rotating libration  point coordinates relative to L1, those near 1.2 are transformed
to rotating Ii brat ion point coordinates relative to Lz, and those near the Earth are transformed in to
Sun- Earth rotating coordinates relative to the Earth. Next, the date associated with the patch point
state is advanced 28 days for February or slipped 28 days for December (based on the approximate
period of the Moon in the respective rotating frame). The states are then t ransforrned  back into
inertial coordinates using the adjusted times. These inertial states then serve M the initial estimate
for the patch point states in the new months. This provides a sufficient first guess that quickly leads
to soluticms in both months. Both solutions are summarized in Table 3.

Launch Period Analysis for Each Case

Tbc  strategy for the lauuctl  period analysis comes in part from tllc irltuitiou  gained irl irlvc!stigat-
iug the urrstable  manifolds, and also from experience. The prirrmry issue that drives the metilodology

14



Table 3
GENESIS Trajectory Sunlrnary  for Dcccnlbcr  and February Launches

rEvt!Ilt

LEarth  Launch
LOI
lManeuve[
Maneuver
Reentry

December
D a t e  –

(m/d/y)
12/18/00
04/05/01
03/02/03
05/04/03
07/24/03

Altitu(le
(km)

200

125

(l[;[
-3194.56

42.f.YJ
17.57
19.99

—

.—
Dat(!

(lu/d/y)
02/12/01
05/31/01
04/27/03
07/08/03
09/18/03

Februarv.
Altitu(l(!

(kui)
200

125

(ll:;
31!)3 .22

10.08
20.00
19.41

is the sensitivity of the retur~l  portion of the trajectory. A very slight changein the state near L1 can
result inescape fromtbev icinityofthe Earth, or perhaps axeturn to F,arththousands  ofkilonleters
off target. In addition, the position of the Moon as the spacecraft passes from LI toward L2 can
have asiguificant impact. Therefore, thestrategy forthe launch period analysis begins by freezing
the return segment of the trajectory. h40re  specifically, only the initial launch segment need be
analyzed. So, in addition to the usual launch constraints, an additional time constraint in the form
of a specified Julian date is placed on the launch state. ‘I’he AV budget for the trajectory from
lautlch  tottlefirst reentry  (excludir~g trajectory correction ~tlarleuvers)  isassurtlecl  to be9Orrl/s. The
duration of the launch period is then determined by computing solutions with varying launch dates
until the required AV at the LOI point, plus the other deterministic AV’s iri the various nominal
solutions, surpa-sses  the90m/stotal.  Theresults oftllis arlalysis  are I)rese~ltecl ir~Figure  6w'l~ere the
nominal solutions for each month (computed in the previous section) arc marked with the symbol
“o”. The data for the curves iuthis figure are computedb yadjusting the launch dates at oneday
increments. However, there are no constraints that would prohibit continual launch opportunities
from the specified parking orbit throughout the launch periods in each of the three months.

Of additional iuterest here is the observation that two local minimums appear during each month.
In each case, theminirnum with tllelarger ~~lagrlitucle  correslJorlds totl~edy~lar~lical  sit~latiorl where
the spacecraft passe scloser -to the Moon than in atiy other  solutioli  option  during that samemonth.
For most of the cases in all three months, the closest lunar encounter during the launch segment
ranges from a spacecraft-lunar distance of 300,000 kul to 400,000 km. In the region of the higher
local minimum, the spacecraft passes much closer to the h400rl; within 83,000 km for December,
106,000krn  for January, and 124,000knl  for February. For various reasons, it is specified that a
lunar encounter is to be avoided for GENESIS. Nonetheless, the h~oou’s  impact is clear, and it could
potentially be useful if a lunar encounter were incorporated into the launch strategy.

C O N C L U S I O N S

Thcgoalo  fthisstuciy  (aside from theactual  missiondesi,gn)  isdernonstration of the advantages
to be gair~ed by using dynamical systems thec)ry in the desig[i process. In particular, DST can be
directly applied to the more complex dynamical models in spite of the loss of periodicity of the orbit
relative to the libration  point. In addition to the first guess utility, a great deal of insight can be
gained that is valuable throughout the design process. This is demonstrated in the formulationof
thelaunch period analysis. Also a}~~)arerlt isacertai[l degree ofsyltlrlletry  irltlle ~)roceclllre  to satisfy
launch and return constraints. Ineachof the cases investigated, the successor the design, both in
meeting the mission constraints and in eff~cie[lcy  of the design process, is based on an improved
theoretical understanding of the three body ~)roblmli.
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APPENDIX: A SECOND EXAMPLE

It is notable in this problelo  that the solution space is complex and not yet fully explored. A sec-
ond example demonstrates a lower-cost alternative; perhaps more importantly, however, it suggests
some structure underlying a potential fatnily of solutions. This second result is obtained using the
initial guess that was previously generated usirIg  DST. However, the reduction algorithm to meet the
launch/return constraints is implemented with a slight variation. The LOI point is shiftecl  further
back, i.e., closer to the launch by 9.5 days. With exactly the same launch and return constraints,
the solution converges to the trajectory in Figure A.1 and Tables A.1 and A.2. The solution appears
very similar to the result in the previous example (Figure 4). Ho\vever, the 0711y significant AV is
the LOI maneuver. In the curre[lt  forrnulatio[l,  tlIe location and time of the 1.01 point is effectively
a constraint. By shifting the point along the manifold, the algorithm convergt!d  to a solution \vith
a somewhat higher LOI AV but  a zero-cost return segment.

It is also observed that the algorithru  has adjusted the Lissajous  to be slightly larger (riotably  in
the AU direction). As seen irl Table A.2, the cost for additional reentry opportullities is approxiruately
the same. This second baseline solutiorl for Ja[luary  can rw~v be relatively easily extendrxl  to the
otlmr nlorlttls. The  n e w  liili[l~tl ~wriod  atdysis al)l)cars irl F’igure .4.2, and is cor[l~mred  wittl t ha t
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frolu the prcviol]s cxaniplc. Assur[lirlg timt  tllc! hu’gcr I.issajous  trajcctor’y  is acceptabk!,  t}lc figllrc
illustrates continuous lauILcll opportuuitics over the three  xuotlths at a lower total cost. More iu-dc:pth
analysis is ongoiug.

Table A.1
Trajectory Summary for Lower-Cost January Launch

[

Eveut Date Altitude
(IU/d/y) (km) (n$$

Earth Launch 01/15/01 200 3193.76
LOI 04/23/01 8.47
Reeutry 08/19/03 125

Table A.2
‘lkajectory  Summary for Additional Reentry Opportunities

Second Reentry Third Reentry

Hy5 ‘ 8 g ‘t~~:~
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Figure A.1 Lower-Cost Solution with January 15, 2001 Launch
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