
A MINIMAI.IS’l’ HARDWARJi ARCHI’I’JKYJ’UIW FOR USING
CX)MMERCIAI. MICROCONTROI.I,l!RS IN SPACE APPI,ICATIONS

D. W. Caldwcll”, 1). A. Renncls+

*’Jet Propulsion laboratory
*Avionic Systems Engineering Section

*+Avionic Equipment Section
4800 Oak Grove Drive, Pasadena, CA 91109

doug.caldwell(l?jpl.nasa.gov

ABSTRACT

Microcontrollers provide very dense functionality for
embedded applications ranging from telephones to
automobiles. The acceptance of these devices for
space applications has been hinclerccl by their
manufacture which often uses multiple semiconductor
fabrication techniques and thereby compromises
radiation tolerance. If such concerns could be
mitigated, microcontrollers would provide a
substantial increase in performance for builders of
spacecraft electronics.

This paper presents hardware considerations for using
commercial microcontrollers in space applications.
The motivations for starting with commercial devices
and the concerns associated with their use are
presented. The advantages of software versus
hardware voting schemes to mitigate single-event
effects are discussed. Interprocess communications
approaches and scheme for improving 1/0 robustness
is presented.

INTRODUCTION

Microcontrollers are highly integrated computer
systems on a chip: a processor and various support
functions such as program memory, scratchpad RAM,
discrete 1/0, ND converters, serial cot~lt~ltlllicatiot]s,
counter/timers, and watchciog timers (WI)T). While
some simpler microcontrollers have been used in
space, their application has been more like that of
small computers surrounded by 1/0 devices; very
inexpensive commodity devices have not been widely
used because of their lower radiation tolerance.

‘University of California, Los Angeles
School of Engineering and Applied Science

I)cpartmcnt of Computer Science
408 I[ilgard Ave., Los Angeles, CA 900xx

rennels @ cs.ucla.edu

Our rcsc:irch explores how to use commercial devices
cost-effectively to support distributed, modular
spacecraft architectures. Rather than develop a single
representative system, wc seek to create a “toolbox” of
techniques which can be broadly appliecl to many
microcontrollers ancl which provide a designer with
approaches that can be tailored to given application.
Ikrdwar-c minimization is balanced with reliability
gains; neither is considered the sole objective. As a
target, the solutions attempt to have obviously lower
implementation and deployment cost with real-estate
(mass), power and reliability comparable to those of
current design practice.

g“his research considers primarily the space single-
evcnt effects environment, where a high transient error
rate is expected and where latchup conditions may
occur that require a microcontroller module to be
immediately powered down to prevent permanent
failure. We are attempting a minimalist approach
where fault-tolerance must be applied at minimal cost
whilst providing fault recovery under difficult
conditions. This paper presents a work in-progress; we
have spent the last nine months on the design of a
fault-tolerant microcontroller node and we will soon
start the implementation of designs to validate its
functionality and fault-tolerance properties.

MOTIVATION

Most discussions of the desirability of using
commercial components focus on the low cost of such
devices, but this is only a small part of the picture
since parts typically contribute a small fraction to the
cost of a fielded space system. State-of-t he-art
microcontrollers have substantially lower power and
higher functional density (which leads to lower-mass

systems) than available rad-hard dcviccs and they
support the illlplellletlt:itiol] o f distributed
functionality prcJcltlctivity -e11112tllci]]g software tools.

Functional Density
The primary motivation for using conuncrcial
microcontrollers is their high functional density and
low power. Rad-hard microcontrollers must generally
sacrifice some of the achievable functional density
since the fabrication technologies required to
implement the different on-chip functions such as
program memory implemented with EPROM cells and
A/D converters arc generally incompatible with rad-
hard processes. Also, the plethora of device types
which allows the designer to choose an appropriate set
of 1/0 functions for a given application could not be
replaced with rad-hard devices owing to their high
non-recurring costs.

Distributed I/C) Processing
Historically, many simple sensors and actuators are
serviced by one set of front-end electronics; in the
degenerate case, a central computer supports 1/0 on its
local bus and signals arc distributed using the system
cable harness. This approach incurs significant
(usually unquantified) cost penalties for systcm
engineering, integration and test due to the cost of
managing the dedicated, point-to-point interfaces;
each interface must be defined, tracked and tested.
Although uniqueness is an intrinsic property of low-
Ievel devices, allowing this uniqueness to propagate
throughout the system substantially increases system
complexity.

Distributed 1/0 functions and their associated front-
end or reactive processing can be managed more
efficiently, at higher levels of abstraction, and with
more standardization; they can provide engineering-
units conversion and can packetize data for serial
communicant ion using a standard protocol.
Additionally, local processing can reduce transmitted
data volume and can provide dramatically lower
latency than can be accommodated by a central
computer with multi-tasking software. Of course, to
provide such local data handling, some form of
processor is required. This may take the form of a
relatively simple state machine implemented in an
FPGA or software on a microcontroller.

The acceptance of field-programmable gate arrays
(I;PGAs) has dramatically changed the spacecraft
avionics dcvelopnwnt process, allowing the creation
of complex application-specific logic which can be
readily changed, thereby reducing parts count (and
thus mass) and development time. These attributes are
also true for microcontrollers. Although a function
inq~lemcnted by an FPGA will generally be much
faster than if it is implcmentccl in a microcontroller,
far more complexity can be captured in the software of
a microcontroller. Functions such as engineering units
conversion and sophisticated fault-protect ion
algorithms are simply impractical i n FPGAs.
Microcontrollers fill the gap between general-purpose
computers and FPGAs; they are more like small
computers than are F’PGAs but their application
granularity is more like FPGAs than general-purpose
cornputcrs.

l)evelopment Time

As in the commercial sector, the primary application
of increased computer performance is to support the
use of more sophisticated development tools and thus
allow more functionality to be implemented.
Commercial microcontrollers are supported by a wide
range of development tools, which evolve with device
families and thus incorporate the latest software
development paradigms.

Partitioned Architecture
The complexity of on-board software continues to
grow and there will be a continuing discrepancy
bctwccn the capabilities and costs of commercial and
rad-hard general-purpose computers, but increasing
demand for higher-performance. One approach to this
problem is to partition the spacecraft information
system. Generally, functions such as on-board
autonomy and data reduction are where the greatest
anlount of software growth is occurring since the
demands for these are increasing more rapidly than the
basic housekeeping and attitude control tasks required.
The former functions (autonomy and data reduction)
have very weak real-time constraints compared with
spacecraft health functions. This property can be
exploited by basing the computers which perform
weakly real-time operations on commercial high-
pcrformance computers and simply accepting frequent
service interruptions due to transient upsets.

.

In sLich an architecture, the spacecraft software
functions would be partitioned such that operations
critical to spacecraft health and safety arc supported
with very high real-time reliability using a
combination of hardware and softw:lre tools. l.ess-
critical, less-real time computations can then bc
performed using hardware and software which arc less
robust.

in contrast to this approach, there is a disturbing
tcnclency toward placing in a central computer
virtually every function which can be implemented in
software. This strategy arises from the belief that it
simplifies software management and rcduccs
computer cost and power. In f:ict, it pmbablyhas the
reverse effect. By forcing software clcmcnts with
disparate needs to run in the same environment,
development costs are increased. For example, both
Mars Pathfinder and Deep Space One perform power
management in a central general-purpose computer,
relying on system software to manage low-voltage
situations on the main power bus. in both cases, there
is justifiable concern about the speed with which the
software can react to critical situations. To combat
software costs, higher performance computers arc
required to provide larger margins to allow processing
time for the inevitable cross-coupling interactions.

It is also worth considering that not all computation is
created equal. A general-purpose 32-bit computer I ikc
the MFC] delivers about 22 MIPS (at 20 MHz) and
consumes 7.5W -- an efficiency of about 3 MIW/W.
The 16-bit 80C 196CA [4] delivers about two M1}’SZ
(at 20 MHz) while consuming 375 mW yielding 5
MIKS/W -- roughly equivalent to the MFC when
considering the types of code which arc likely to be

——

1 The Mars Pathfinder Flight Computer built by
Lockheed-Martin Federal Systems.

2 The MFC RAD6000 and the PIC microcontroller arc
both RISC machines, thus the reported values arc
relatively accurate. The 8xC 196 family has a CISC
instruction set which is much more difficult to
analyze, with instruction execution varying between 3
and 33 state times. The given figure is an estimate
based on based on assuming that the compiler will
emit predominately the simpler instructions, as is
predicted by the RISC paradigm. A figure of 2 MIPS
corresponds to an average of 5 st~ite times at 20 Mtlz.

inlplenwnted on the 196. A rather startling example is
the 8-bit P1C16C73A [3] which clclivcrs 5 MIPS (at 20
M}lz) at about 60 nlW (typical) for a whopping 80
M1t’S/W ! For a large class of applications, this
processor is ~ more efficient than a central computer.
This comparison is tabulated in Table 1.

Onc might argue that this is not a fair comparison
because a spacecraft computer 1 ike the MFC has far
more capiibility th:in a microcontroller. I1owever,
both h:ive all the attributes of a “computer” and that,
from the perspective of typictil computzitions on 8-bit
sensor or actliator dzita, their processing is largely
cornp;irablc.

Table 1. Computational Itfficiency Comparison.

Microchip PiC16C73A 8 20 – 5 10.06/ 8 3 1

F’oilr dec:ides of fault-tolerance research for space
:ipplications provides the designer with a plethora of
w:iys to make a microcontroller robust in the space
environment [1]. Using these selectively to balzince
cost :ind rclitibility is non-trivial.

(Jsing rcdund:int microcontrollers running identical
applic:itions software with comparison or voting for
error detection and correction is an obvious start.
While it might zippe:ir that lock-step execution and
h:irdwarc voting is the most straightforward approach,
the highly integrated nature of inicrocontrollers makes
this approach questionable. Variations between A/D
cc)nvcrters will rcslilt in different vallies being read.
l;vcn with lockstep devices, digital edges have finite
triinsition times and each microcontroller has its own
inplit thresholds so edges will be seen at different

times. There will be a tenctcncy to diverge even with
perfect operation. Also, with more than two
processors, it would be valuable to be able bring a
wayward processor back on line without stopping the
others -- clearly not possible with lock-step operation.

‘1’bus, processors run with their own local oscillators,
with a combination of software voting and simple
external hardware to combine signals.

Interestitlg design problems occur because the highly
integrated microcontroller provides many functions
that cannot be modified, yet must bc covered by fault-
toler:ince. Some of these design problems include:
● Interactive Consistency. Consistent computations

for voting or comparison must be guaranteed even
though individual microcontrollers IIIay read

different values for the “same” input. [2]
. Error Latency. Error latency should bc bouncled,

but there is no access to the internals of the
microcontroller and there is essentially no internal
checking -- not even memory parity. Thus,
periodic internal testing must be interleaved with
normal operation.

. Circuit Isolation. In order to use the same external
interconnects for varying numbers of redundant
microcontrollers, the inputs and outputs are
connected
protection
babbling.

● Fast 1/0.
more than
occasional

(b u s s e d) t o all of thcni. T h u s ,
must be supplied against shorts and

Real microcontroller applications do
poll analog inputs and gener~tte an
output; they often read high-speed

timers or generate output waveforms (e.g., PWM)
on time scales inappropriate for software
consistency determination. Thus, techniques must
be described which allow these sign:ils to bc
generated correctly without frequent software
interactions.

In this research, systems containing from one to four
processors will be investigatecl.

[--- ““-”1+~,.m
C.mm.., cal(on,

---q:”-
[

System I n t e r l a c e Boundar)

—

s~,,.m P.. er

‘ - - - - - 1

:-J:::______________________

[_.

u-
SYSI.7?,

C“n, ”l.., c,l, o”,
B. fl. r, & O,hs,
support c,,,.,,,

— — ——

r--J - - Fault Conla, nmenl Rt?g, on

:[1

co. ”,.;
/ ,,0

, 1,.1,,,0.
I Fun,,,,, >

1
,
1

I

t
I
1

,
I
I
1

1

1

I

1

1

1

!

4

[Fhda
P..,, + to O,har Load,
Ccntr.1 .
..T. —

-------------------------,

1 1
1

I I

1
I

I

1 r]Ca”lr>o”
1 c1

1s01,,,0,
Fun,, an,

II

i _ . _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ .._____j

E::]

Nod. SKa., f,C
M,,,. <,. ,,11,,

Managed Fancl, on,

Figure 1. Physical Architecture.

PHYSICAL AR{;HITF;CTURE
The generalized physical architecture which will be
explored is shown in Figure 1. The figure might be
the block diagram of a functional element (e.g., an
lMLJ) in which a designer desires to use a
microcontroller but it is obviously nlicrocontroller-
centric :incl presumes a need for controller fault-
tolerance. At the top of the figure, the system to
which the functional element is attached is shown as
nothing more than a source of power and
communications.

A number of processors (microcontrollers) provide
f:iult-tolerant attributes to the system. When more
than one processor exists, some mechanism must exist
for determining which is the Master and which are
(:/u?ckers or are off-line. The Master is the processor
which coordinates fault-tolerance aspects of the
functional clement. Generally, the Master mav be.

considered to be ~h~ microcontroller of the system
while one or more Checkers determine the validity of
its actions. However, the Master is not static:illy
assigned so there is no one device which is always the
Master.

The primary use of microcontroller 1/0 is to interact
with the sensors and actuators which define the
functionality of the clement. This 1/0, that which is
provided to accomplish desired node functionality
even without fault-tolerance, is called Nortnal 1/0.
An important part of this research is to dcscribc how
Normal 1/0 is protected against faults and how
processing is protected from faulted 1/0. As shown in
Figure 1, the Normal 1/0 is isolated from the rest of
the functional element and from the microcontrollers.
1/0 isolation of each processor allows individual
devices to be turned off in support of SF;L mitigation.
Common 1/0 isolation protects circuits outside the
fault containment region.

Some of the microcontroller’s 1/0 pins arc necessarily
used to support fault-tolerant aspects of the node and
these are called Check I/O. The Check 1/0 provides
three functions:
. The Master Charnel provides a data path for

communications between the Master and others.
It may be parallel or serial, bussecl or point-to-
point, broadcast or directed. Virtually any
convenient data path is acceptable.

● The Statl(s Cknnel provides a “back door” to the
Master Channel, guaranteeing communication
with other processors or with the External Conflict
Resolution block if the Master Channel is
inoperative.

● The quasi-static Assigt/ment Cha)i}lel indicates
which device will act as Master, which will be
active Checkers, and which will be off line.

External conflict resolution is invoked when normal
communications (using the Master Channel) and
recovery techniques fail. The only mechanisms
available for this purpose are individual (or multiple)
processor resets and individual (or multiple) power-
cycling of the devices. The microcontroller power
control block allows the devices to be power cycled
but also provides SEL mitigation functions.

CHECK 1/0

The microcontroller’s 1/0 is a resource which must be
used to implement the fault-tolerance functions but it
must not be squanclercd. Although the Master
Channel may be implemented in various ways, a
simple serial channel minimizes 1/0. Sophisticated
serial 1/0 like IZC may be used, as may bc UARTS or
even software-implemented serial channels. The
consumption of IZC or UART hardware resources
must be balanced with their simplicity and speed. In
all c[ises, communication latency may be minimized
by computing a syndrome (e.g., checksum) over a
Iar-gc block of data and checking only the syndrome,
not the data itself.

The Status Channel is used for simple signaling which
is independent of the Master Channel. Status may be
Lmcl to signal the validation of data passed on the
Master Channel but the minimalist approach uses
Status only for external conflict resolution (as shown
in Figure 1) in the event of complete failure of the
Master Channel. Two 1/0 pins per microcontroller are
reserved for Status.

The Assignment Channel must satisfy the following
requirements for a three-processor system:
. A unique master can and will be selected given at

least two operation:i] processors;
● The selection scheme is not susceptible to race

conditions;
. A master-capable unit rejoining the system will

not affect ongoing processing (e.g., by demanding
mastership);

The assignment strategy selected is first-come, first-
claim with conflict resolution using hardwired node
11)s. The 1/0 requirements may be minimized if some
configurations arc disallowed. For instance, in a three
processor system, operation with any two may be
allowed but not with only one. In this case, orle Unit

cannot assert mastership since it will always be paired
with one of the other two. Thus, the mastership
selection algorithm need only select between two
master-capable units and resolve conflicts between
ttlose two. in this example, only two 1/0 pins are
required to implement the Assignment Channel.

1/0 ISOI.ATION
As mentioned earlier, devices arc isolated from each
other and from the rest of the functional element. To
allow devices to be turned off in support of SIiL
mitigation, they must be prevented from being
parasitically power-cd through their input protection
circuits. Complete isolation can bc effcctccl using an
active device like the MAX367 Signal -I.inc Circuit
Protectors [5] but a current-limiting resistor on each
1/0 pin suffices.

The other function of 1/0 isolation is a voting
function. Although it would be expected that the
Master would ascertain from the Chcckcrs whether its
computed output is correct, it cannot be the SO]C
generator of output because its output port flip-flops
are susceptible to upset. Instead, both the Master and
its Checkers must output their versions of truth and
these must bc voted externally. A non-minimalist
approach would LISC digital voting circuits but these do
not allow ports to be bidirectional and would require
significant real-estate. The simplest approach uses the
aforementioned current-limiting resistors as an analog
voter, where the majority vote drives the output above
or below the midpoint voltage.

This approach is overly simplistic since voltage Icvcls
generated under fault conditions are not compatible
with standard logic families. A single output fault in a
three-processor system will generate a voltage which
is either 1/3 or 2/3 of Vcc; a single fault in a four-
processor system will generate either 1/4 or 3/4 Vcc.
Although 2/3 or 3/4 of a standard 5V supply (even at
4.5V) is a legitimate TTL logic high, no logic family
considers 1/3 or even 1/4 of Vcc to be a legal low.

Self-Checking Ports
The problem may bc addressed by exploiting the
microcontroller’s 1/0 port structure. For most devices,
1/0 pins are bidirectional and it takes two conditions
to output a high level on an 1/0 pin; the output flip-
flop must be a “1” and the 1/0 pin must be configured
as an output. There are three other state pairs which
do not result in an active high level being output. One
of these states corresponds to neither of the requisite
conditions for “high” being met: the output flip-flop
contains a “O’ and the 1/0 pin is configured as an
input. This point lies Hamming distance two away
from the active-c)ne state; if the correct output is zero,

two flipflops of one device must be incorrect to
generate an active high. If an external resistor is used
to pull the output down when the pin is in the
{ output=O, direct ion=input } state, then the only le~~l
high state Iics two faults away from a legitimate low
state. While pullups are general[y preferred in logic
design to pulldowns, this stems from the ability of N-
channel clcvices to sink more current than P-channels
and thus speccls the high-to-low transition -- a
requirement not needed for the relatively slow
microcontroller pins used to control the real world.
The pullclown resistor also serves to drive the output
to a safe state during initialization.

Table 2 shows the four possible combinations;
diagonal entries correspond to states with Hamming
distance two. As noted in italics, the solution is
imperfect; a single bit error can result in an active low
output with probability 0.25. Similarly, the input
protection circuits of an unpowered device will sink
current. Either of these cases will result in a signal
which is clearly “high” but not necessarily compatible
with a given logic family.

These effects can bc handled in one of three ways:
● [Jsc low-threshold input devices (e.g., the TTL-

compatible inputs of the PIC microcontrollers or
the HCT family, both with Vlil = 2.0 V);

● Use diode isolation to prevent current from
flowing into the microcontroller (although this
precludes bidirectional port operation);

● Use transmission gates (analog switches) which
are turned off when the microcontroller is
unpowered.

The technique relies on making it very difficult for a
port SEU to result in an active high fault. Thus, if a
any active high exists, we assume that it was correct.
The diode network option forms a diode-OR function
and could be replaced by an OR gate (remembering to
use input pullups). Essentially, a number of self-
checking registers (the dual bits of the output port)
any one of which can signal high.

One side-effect of the approach is that an output will
be high from the time that the first device outputs a
high until the last device releases it. The pulse
widening is equal to the maximum clock skew
between any two processors.

Table 2. 1/0 Pin States for SELJ-Tolerance with Active One.

ollt~lllt Tri-State Enable Bit (PIC Microcontroller Interpretation)
value— —

1 (Configure as input) o (Configure as OLltpllt)—
Valid State: O. Invalid State.
Output = hi-Z. Output = low-Z, logic-zero voltage.

External pull-down yields a “zero.” If fault is incorrect 1/0 configuration state, low
o voltage output matches desired state (helps the

external pull-down).
lj fault is incorrect output bit, a majority is
generating Ion’-Z, logic-one voltage; a push-
pull conflict exists. W’otecl” rlode state depeds
on logic thresholds (high arid low) of receiver.—

Invalid State. Valid State: 1.
Output = hi-Z. Output = low-Z, logic-one voltage.

Fault is either incorrect 1/0 configuration or Output overrides external pull-down.
1 incorrect output bit; output is tri-state. Correct (But an output-bit fault in another

state of the voted node will be forced by other microcontroller results in a push-pull conflict.)
microcontrollers and the external pull-down.

Coverage I.imitations
The previous techniques provide an output structure
which can tolerate power recycling for SEL mitigation
:incl also for single bit-errors in the output registers.
However, this latter characteristic provides only some
tolerance to SEU in the registers themselves; the
approach is not tolerant to clouble bit-errors in the port
registers (half of which result in incorrect output state)
nor to single bit-errors in computations whose results
output the wrong value -- a common mode failure.

Latent faults in port registers can lead to double-bit
errors, a concern since static outputs arc vulnerable
100% of operating time. Periodic scrubbing can
reduce the error rate only so far; scrubbing too
frequently increases the probability of introducing a
common-mode “double-bit error” as a result of a
single-bit error during the scrubbing computation.

For some outputs, there is either no need to deal with
the problem or no practical way of dealing with it.
For example, it is impractical to apply any form of
software fault-tolerance to, say, a 2400 Hz PWM
signal or a 9600 baud serial channel. Fortunately,
these frequently-modified signals are essentially self-

scrubbing; the short time before the state is driven to a
new state makes double bit-errors very unlikely.

Scrubbing requires additional information to
determine what the correct output should be. The port
state may be stored redundantly in RAM or may be
determined by reading the port bits themselves. The
latter approach requires that both the output bit and
the configuration bit be independently readable, a
feat ure which is also valuable for validation
experiments to determine the probability of 1/0 port
flip-flop upset. The PIC microcontrollers [3] have this
capability, as do the Intel 87C 196Kx, Jx and CA [4];
many older parts do not.

If the expected error rate after scrubbing is still too
high (e.g., for safety-critical functions), hardware
interlocks may be used wherein a critical function
must be enabled by an independent control signal.
Interlocks are particularly valuable for a two processor
(self-checking pair) configuration since a single-bit
error will always result in ambiguity if only two
devices are being voted. An 1/0 pin on each
microcontroller used as an interlock in such a system
will result in the equivalent of four microcontrollers
participating in the state vote.

,-

EXPERIMICNTS
in order to force an outcome which will be valuable to
the spacecraft avionics community and to provide a
testbed for evaluating the effectiveness of the
techniques, some experimental designs will be built
which are representative of space systcm elements.
These application examples arc sufficiently complex
to p rov ide in s igh t s i n to real p rob lem Wllilc
sufficiently simple that their i[~~plerllcr~t:ltiorl should
not distract from the investigation. The sclcctccl
applications use different numbers of controlhxs to
implement their reliability goals and thus proviclc
examples of different processor configurate ions
including a triple-modular redundant configuration, a
self-checking pair configumtion which is designed for
block redundancy, and a distributed computing
system. The examples also span 1/0 requirements
from simple hi-level and analog voting to pulse train
generation, event timing, and serial communications.
These example problems are an inertial measurement
unit, a propulsion/pyro swi t ch ing un i t , and a
distributed sun sensor.

The prototypical example applications will use the
Microchip PIC16C73A [3]. Its functionality, while
relatively limited, is sufficient to implement the
chosen applications but these same limitations force a
frugal approach to fault-tolerance -- it wou]d bc very
easy to LISC ali the 1/0 pins just inlplenmntirlg fault-
tolerance. Because this microcontroller family does
not provide access to its irltemal address and data
busses (unlike other families), any temptation to Llse

too much 1/0 and then reconstruct it externally is
removed. Finally, one of the authors knows of
avionics practitioners interested in this chip so results
of this research should be immediately valuable to
them.

CONCI.USIONS
We have described the initial steps toward a generic
approach to implement ing cost-effective fault-
tolerance augmentations of commercial
microcontrollers in demanding applications such as
spacecraft control systems. The described
experimental designs, to be implemented in late 1997,
are expected to provide us with the insights to
determine the effectiveness of these techniques.

ACKNOWI.EDGMENTS
‘1’his work was supported by the Jet Propulsion
I.aboratory, California Institute of Technology, uncler
a contract with the National Aeronautics ancl Space
Administration and by the Office of Naval Research,
under a contract with the University of California, Los
Arjgcles.

[1]

[2]

[3]

[4]

[5]

RW’ERENCIM
V. P. Nelson, B. D. Carroll. “Tutorial: Fault-
Tokrant Computing.” lW% Computer Society
Press, 1987.

S . G. Frison, J . H . Wensley. ltltet(ictiw
Lkmistctic.v citd Its Ittip(ict m TMR Systettis in
Dig. Int. Symp. Fault Tolerant Computing,
FI’CS-12, June 1982, pp. 228-233.

“PIC 16/17 Microcontroller Data Book.”
Microchip Technology, Inc. 1995/1 996.

“8XC196KX, 8XC 196Jx, 87C 196CA
Microcontroller Family User’s Manual.” Intel
Corporation, JLIJ]e 1995.

“ 1996 New Releases Data Book, Volume V.”
Maxim Integrated Products, 1996.

