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Abstract

The new breed of autonomous goal-driven space-
craft contain much more onboard capability than
their sequence-driven predecessors, cienlanding corr-
esponding  advances in software verification tech-
niques. Although autonomous systelns  arc deternlin-
istic, they are highly sensitive tc) the environment,
such that the response of a system in certain con-
texts must be explored in detail in order to provide
confidence in both the design and implernel[tation.
We describe a system verification strategy and tool
based upon the automatic generation and executiorl  a
large number of tests that are “near” a given nominal
mission scenario, and a novel use of for[lial methocls
to analyze the test results. Results from verifying one
software system bear out the benefits of using forlnal
behavior specifications.

1  INTRODUCTION

NTASA is nloving  into an era of inrreascd spacecraft
autononly[l]-  a natural outcome of a desire to reduce
the cost of science data combined with the impact of
light-time conlnmniratioIl  delays and the availat)il-
ity of ever more powerful space-capal)le  con)puters.

“’l’he work described was performed at the Jet [’mpulsitrn
laboratory, California Institute of ‘Iechrlolcrgy  under  co[ltract
with the National Aeronautics and Space  ~lcirl]inistratic)ll.

Autoncmly  has the poteI1tial to
spacecraft operations, inl~)rove
vide increased science product

decrease the cost of
reliability, ancl pro-
volunle ancl quality.

I[owever, before these things can occur, we must pro-
vide a conlpelling  argunleIlt  that we can address re-
liability concerns  over the full product lifecycle.

l’raditional  spacecraft flight software testing basi-
cally de[nonstrates  that each con)rna~ld works cor-
rectly, and that combinations of commands that are
likely to be used during the Iltission work properly
together. This has been appropriate and effective,
because  the systems are desig[led to nlinilnize  the in-
fluence of environmental factors on the execution of
low-level cornlllands.

Ilowever, almost by definition, as the degree of
autononly  increases, the sensitivity to the envirorl-
tnmlt also increasesl.  Since the system is sensitive to
the ellvironnlent,  and the actual mission ellviroIln)ent
caI\’t be predicted with sufficient accuracy, one nlust

1 “Auto fLon)j ,“ is often  described M “closing rnorc loops orl -
hoard”, but it nlay  also he viewed M arl online  optit[lizatiorl
[,roble[r]  (e.g. rrlinir11i7e  rswourcc consunlption,  rltaxitili7e sci-

ence rcturil,  optin~izc  a schedule) where the environnmt  h=
substantial influence on the  outconle  of the optir[liz,  atiun.  It is
the nature of discrete npti[nization  problenls  that they  can be
very sensitive to parameters in the sense that a seenlingly  snlall
change in the input can cause a large and “non-linear” ditTer-
erm in the  output For example, a charlge  in ttle  length or time
clf all event  of a fractiorl  of a percent can cause a planner algc~
rittl[[l  to e[tlit  a very different [)lan. L%’e rIlake  ttlis  distirlctiorl
in order to stress ttle illlportar](.c  of state expioratiori.



explore the behavior of the systcnl  over a rangy of
plausible environnlents  inordertogtiu confidencci)l
the robustllessof  the system.

The tools and techniques we propose automatically
generate a large number of plausible environn}euts,
explore the response of the system over the enviro-
nments, and characterize the robust ncs so fthe systcvl~.
Our approach is based upon dynamic comparison of
the state trajectory of the systeul  being tested against
mathenlatically rigorous (formal) descriptions of the
expected behavior of the system. We propose to use
both black-box (i.e. description in term of initial
state, inputs and outputs oIIly)  and white-box (in-
ternal details of the software execution are exposed)
descriptions, because the closed-loop nature of the al-
gorithms will tend to rrm.sk some faults and so render
black-box testing incomplete.

We begin with by describing how the differences
between conventional and autonomous spacecraft ini-
pact the test and verification problem. We then out-
line our proposed tool suite and show how it addresses
the issues. Finally, we describe the results analy-
sis component in some detail, including sonle sample
.spccifications.

2  W H Y  T E S T ?

Ultimately, our objective in testing is to ilnprove the
expected science return, and so r[)inimim the illcre-
rnenta.1  cost of science data. PreInature spacecraft
failure is the biggest threat to science returrl,  so a
sigrlificant, part of autonomy software tries to pro-
tect the spacecraft against onboard failures and self-
destructive comnlanding2.  lJnfortunatcly,  since an
auto~lonlous  system by definition has substantial col I-
trol over its own fate, it follows that the spacecraft
is highly vulnerable to mistakes within the autonouly
design and ir[lplelrlerltatic)  rl, and so should be heavily
cxm-ciscd.

If we stipulate that the spacecraft can’t be COIII

2Spacecraft  ha\w always had a powtrful  on-board fault pro-
tection capability. Modern autonorlly  software enables grcate[
fault co~wrage  and responses that are  more  likely to allow the
rnissio[l to progress w,ithout  human involven~et~t irl the rccowry
process.

~na[lded to cause itself pemaneut  harv[l,  then the
next biggest threat to science data return is to conl-
Inand  the spacecraft to do something of low science
value. 1 low to provide a Ilvxrs.ure of the science value
of all possible observations a priori  is at best an open
research question, because of the difficulty of captur-
ing and e[icoding the full trade-off space.3 It will
thus be a kmg time before it will be rationzd to d-
low an autonomous systm)  make significant decisions
as to what science data to accluire4. It will there-
fore rcmlain important that we have a method of con-
firming that commands to the spacecraft will provide
good science return, even if maintenance of spacecraft
hm..lth  is no longer a concer]l.

3 T O O L  S U I T E

Our tool suite, nan]ed 7’ST>AR, covers system testing
tasks ranging from auto~natic  generation of test cases
to autonlatic results analysis. The purpose of each
colnponent  is outlined below. In particular, this pa-
per focuses on results analysis, so l’A[lr)I~is  described
irl greater detail later in this paper.

TgeII ‘Ikst-case generation. ‘J’his  conlponeut  will de-
rive a nurubcr of plausible operaticmal  scenarios,
givcl~ as input a single ~~on~inal  scenario ancl cer-
tain J)erturbation  criteria. For exanrpk’, it may
bc given as input an errcounter  with an aster-
oid, which it will use tcl compute a large number
of plausible ways in WhiCh  the mlcounter  may
actually occur; it will vary tirrring relationships,
faults, and resource consurrlption.  It also derives
test-specific pass/fail criteria, whirh  is forwarded
to ‘1’AUI)I1’,  where it is used tc~ aIlalyze the results
of the tests.

3b’or exanlple,  the hfars  E’athfinder  scientists  (dozens of
thetn) spend  much of the night negotiating the  next day’s ob
scr~atiorls.  It is apparent that the science data is irn[)ortant  to
thcltl,  and secnls  unlikely that the.v wc)uld crltrust  these deci -
siorls to an aEgorithnl.  IVC also speculate that it wonld be very
difficlllt  to extract their dccisiorl processes.

41$’e rrlust decrc~se  ttw cost of spacecraft, arirl in}pmve o~lr
ability to cricodc tile tradwff space. urltil it’s cheaper (per urlit
of science returtl) to build therrl v..ith built-in science decision
nlakirlg  thar~ t o  corrl[llarl(l  ttlern durirlg  ttlc rrlissio[l.



Tcxe ‘Ikst execution. This conlpcment  will provide a
uniform interface by which test execution is corl-
trolled. The actual exer-uticm  takes place upcm
an existing simulator, testbecl,  or other vehicle,
typically provided by the project that built the
system that is being tested.

Taudit  Results analysis. Test execution results arc
analyzed by this cmnponent.  It infers the state
trajectory of the system being tested by the
contents of various logs and ntessages  generated
during the test, and then validates that trajec-
tory via format predicates derived from various
sources including flight rules, clesign rules, and
test input.

Tvis Visualization. This component will provide vi-
sualization features for exploring the results of
the results analyzer. In particular, we conjec-
ture that proximity to failure will prove difficult
to surnrnarize,  and so ‘his will provide for inter-
active exploration of this and other results.

4 Taudit

The purpose of TAUD1’1’iS  to check the state trajec-
tory of the software under test against a nlathen~at-
ical specification of correct tmhavior,  and to report
any cliscrepancies.  Although ~’AU [Jrl’is a conlponerlt
of the Tstar suite of automated test tools, it may
also be used standalone to validate a systenl  against
formal specifications.

l’he  ideal is that 7’AuI)rris used with a progrartl-
rning discipline that generates COCIC fror[l  specifica-
tions,  arid specifies additional axioms as the cocle is
written arid yet others specific to a particular test
case. Sufficient state trajectory would be exposed
that TAUI)ll’could  then be used to Corlfirnl that tllm’
are no vic)lations  of any of the axiolns. Of course,
this is not always possible, and rilay not even bc cost-
cffective,  Clepc!nding  on the applir’ation[~,  $2.1]. ‘~’Aw

r)[rldoes  not enforce this ideal,  and n~ay bc used over
a wide rallge  of rigor: fiorn silll~)le application as a
hcav y-duty assertion notation, all the way to full for-
mal specification with critical ~as~)ccts l)rovell and all
checked dy[lrmic~ally.

‘1’A1ll)l’1’sul)~)c)rts  ar~d erLcourages an asss2rtion[3]  or
arlrlotation  [4, 5] style of progranlrrliug,  w’herehy  as-
sur[lptimls  nlade  by the prclgranlrner  are captured in
the form of prw and post conditions[fi]  ancl dynanli-
cally checked. Ideally (trut rarely, if ever), one proves
that the pre and post corlditiorls are complete, con-
sistent, ancl imply the correct operation of the pro-
grarll. ‘1’AUt)tlprovides  confidence in the prc and post
conditions at much lower cost, because it confirms
that a given execution does not violate the condi-
tions, rather than attcnlpting to prorre  that they  are
ucver violated,

“1’he specificatiorl of the system to he tested is writ-
trvi in5 the formal language of TALJDIT.  ‘I’he nlath-
ernatical  logic of ‘1’AUO1’1’iS  a roug~~ly a first order
logic without quantification, with a rich set of re-
lational, arithnw.tic,  logical, aucl bit operators, and
several useful datatypes (boolean, number-theoretic
integers, floats, sets, and enumerated types). It also
inclucles  operators to gairr access to the previous value
of an exprcssiorl and to detect a change in the value
of an exprcssiorL,  and the tirnc at which those events
occured,  which together make it natural to write an
corlcise axiomatic specification of the system without
resorting to tertlporal  logics. Ncm-rwcursive  functions
are provided for expressive cc)nvenience,  but do not
adcl to the power of the notation. l’AU1)[’rirrcludes  as-
Sig[lrnent, but assignlnent  operates “outsicle”  of the
rnathernatica.1  logic ancl is intended to be used to syn-
thesize  variables out of complicated functions on the
iriput,  which are thcrl operated upon frorrl  within the
logic.”

O u r  intcrlt  is that a suite of dornairl-specific
languages will be developed in the spirit of e.g.
l,arch/1,(~1,[7],  which arc easier to use than 2’Au DIq,
arid are conlpilcd irlto I’AU[)[’l’.  Wc thus get the best
of two worlds users can work iri domain notations,
aild ‘l’,kuI)rrIcar~  work irl a single forlllal  dc~~nai117. A
sirlglr! irrlpro~rerrlent  to ‘~ ’A LfI)ll’]evcrag(:s  into benefits

50r translated il!to.
6~,,r ir,t(>[,t i s  to avoid Custorltizing  t}lc tool to particular

a}>[)l ications  by giving ttlc users access to significant compu-
tational ca[~at)ility that can t,e uswt to transform input data
before  processirlg  by the bulk of “1’audit,

71n fact even ‘1’atldit tl~s two Iet,els  of notation: a syrltac-
tically  rich iriflx rlotatio[l  f o r  hurIlarLs, ar!d a lis~) -like prefix
notatiwl for autorllatrxi  lllarli[l~lla!,ic]r].
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for nlultiple user donl.sins. Also, q’AUD1’1’provirh?s  a
nlathernatical rigor that could be excessive for some
applications and can be hidden by the higher dr-
gree of abstraction that may be provided by donlain-
specific user friendly notations. g’his  approach WZLS

used in I,arcb  to good effect.

4.1 E x a m p l e s

Spacecraft are constrained by what are called “Flight
Rules”. l’hese  rules  generally express conditions that
must atways or never occur. Typical flight rules
nlight  be “Never point the caulera  at the sun”, “Al-
ways keep the antenna within 0.1 radla.ns  of tile
Earth”, “’1’he fuel heater must  be on for the thirty
minutes prior to operating the engine”. We can eas-
ily encode these and siInilar rules:

# ! Cmera cone relat,iv~ to the s~~ ~~~t
#! always be at least 0.2 rads.
invariant  cameral

canrera. sun. cone > 0.2;

#!  Antenna angle relat ive to the earth
#! must always be less than 0.1 rads.
i nva r i an t  an t enna l

antenna_earth_cone  < 0 . 1 ;

#! When the engine  is turned on, the
# !  heater must  have been o n  for at
# !  least 30 minUteSO

i n v a r i a n t  engine3 @T(engine_on)
-> heater_on

& (now-tup(heater.on))  >= 30;

#! The clock must advance by at most
#! 1/8 second.

funcdecl diff(_al) _al -  prev(_al);
invariant  tick

O  <= diff(clk)
& diff(clk) <= 0 . 1 2 5 ;

uniquely idelltify the invariant) and then a boolean
expression. ‘1’AIJI)Il’w’ill  confirl[l that the boolean ex-
pressio]l is true  forallobserved vatuesof the state.

‘[’he function ‘(@T()” is true only in the tin~e in-
statlt at which the argulnetlt  becomes true. Similar
fulictious  dr%ect other change conclitious. The  func-
tion “tup” returns the tin~e at which the boolean ar-
gurnellt  last becan)e true. “tclu” and “tch” can ac-
cess the time at which an expression becanm false or
chaugcd,  respectively. l’AUrJIT’provides  the variable
“now” , which is the current tilne.

Assignnlents  operate within the context ofguarded
colnnlands,  as can be seen in the following exaruple.
The  variable Yirstsubfrarne”  is providcdby the sys-
teulandis  true only for the first iteration through the
guardecl cornnlands  at any time instant. Invariants
ruay be applied to the state trajectory that occurs
while the guarclect conlrnands  arecycliug.

guardedcmd  dla
firstsubframe & QC(N) & N > 0:
go := T;

guardedcmd  dlb
go:reps  : = N ;

guardedcmd d l c
go:rslt := 1;

guardedcmd  did
go:go := F;

guardedcmd  dle
(reps > O):

rslt : = rslt * reps,
reps := reps - 1;

11’e have deltlculstratecl  the use of ~’ALJI)IT’to  check
the execution of a software en~ulator for an~icrocon-
troller (thcInte 18085.4). Each oprodewas axiorllizccl,
and then tests that exercise all opccrdrx wwe e.xe-
cutcd.  ‘1’hc following is a somewhat r[lcrre  detailecl
exalnple.  Not  show’11  are sonw sinlple axic)nls  t h a t
sho W that all aritllrltetic is rnodcled in terl[ls of uatu -
ral nurtlbers,  l~or are the (many!) drclaratiorls  shown.

Constraints upon the state of the systenl  are ex- #! eight-bit twos-complement addition.
pressed as invariants, as can be seen irl these exanl- funcdecl  add8(_al,_a2  )  (_al+_a2)%256;
plrs.  E;ach invariant starts with the “invariant” key-
word, followed by the nan]c of the ir~wrriant (used to #! 1 if _al, else O.
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funcdecl bv(_al)  (-al)?l:O;

funcdecl  addcorrrrnon(_al )_a2)
rA <-- add8(rA,_ai)
& fCY <- bv((rA+-al)>255)
&  fS <- bv(add8(rA,_al)  >  1 2 7 )
&  fZ <- bv(add8(rA,_al)  = O)
&  fP <- bv(even_parity(add8(rA,-al))  )
& fAC <- bv((rA%16+_alX16) > 16)
& nc(_a2,{rA},{});

#! ADD r 5-6
invariant ADDr op_nns(#blOOOOOOO)

addcommon(rSSS ,1);

#! INR r 5-8
invariant  INRr op_ndn(#bOOOOOIOO)

r d d d  < -  add8(prev(clk,rddd),l)
&  fS <- bv(add8(prev(clk,rddd),  l) >
k fZ < -  bv(add8(prev(clk,rddd),l) =

->

->

s~)ccification and the concrete progianl  it sprxifies  by
verifying J)rograru  execution against the formal spec-
ification. In this section we will cor[]pare  several of
then~ with our tool,

ACL2[8]  ACL2  is an interesting tool that uses an
executable forn!alized subset (including recur-
sive fur!ctions)  of Columon Lisp[9]  as its nota-
tion. It has a sophisticated theorem prover,
‘1’Au I) IIUW!S  a very sirftilar subset of Cornrnon
Lisp. ‘1’AU 01’1’is restricted to total functions,
where ACI,2 allows the usc of partial functions
at the cost of reduced reasoning capability. ‘~’Au-
[jrldoesnothave  recursive  finctiorls,  though the
could easil,y be added: we don ‘t provide them
because we’re trying to simplify autoruated rea-
soning. ACI,2 does not directly support the dy-
naruic verification goal of l’AUL)I’l>, but see no

127) reason whyitcouldn’t be easily adaptedto  that
o) use by executing the specification and code on

& fP <- bv(even_parity(add8(prev(clk  ,rddd),l)))he same inPUts  and comparing the results  of
& fAC <- bv((prev(clk,rddd)~16+l~16)  > 16) thetwo corrlputations.
& nc(l,{rddd},{});

ADL[5]  AD1, is used to specify the post-conclitions

‘l’he operator “+” is semantically ancl syntactically of functions, and can check that for a particu-

equiva.len ttotheequality operator “==’’,but  (todatc., lar execution, the post-conditior,s  do ir,dcecl  hold
illforrnally)  conveys the additional iufornlation  that true. Its prinlar  ypurpos  eistoforrtlally  specify

the left hand side may have changed during theexe- the serr]antics of functiolis  written in e.g. C++.

cution  oftheopcode,  but therighthand siderrlustnot ‘1’he specification is separate fiorn the irnplen~en-

have changed. The “XIC()” function explicitly states tation of the function, as it is for ‘1’AUI)I’l’.  AI)I,

what values are allowed to change: all other state also has orle base language and multiple donlain

must have remained unchanged. languages, as does ‘l’AurJ1~>. .41)1, does not ap

“J’he  careful reader will also note that “prevo’”  has pear  to have sonle of our concepts e.g. “@lo’”,

another argurnerlt.  The first argument is used to irl- latching “prevo’”, and “tcho’”,  and so is less ex-

dicate wherl to latch the previous value: wherl  the pressive in those qu.asi-terrlpora] areas. It gains

frrstargurnen  tchanges, thcvalue of the second argu- full exprcssik,e~less  via recursive functions, where

ment is latched. We found that this rrlakes it much “]’ALl[)l’l’ck)m  so via guarded Corrlrrlar[ds  that op-
easier to write robust specific atiorls,  sirlcc the tilrl(, crate outside of the ‘1’AU1)l”l’)ogic.  .41)1, is gerl-

epochs car) be controlled frou~ within the specifica- erally richer  in syntax and rnodularizatiorl  than

tion,  rather tharl  by when the state variab]c values ‘~’Au[)ll:  ‘~’A[ll)[lis  rather spartan slid corLcisC  in

hapJ)eri  tc) be emitted from the systtml unckr  test. corrll)arisorls.  AI)I, does rlc)t secrr) to have sul)-
~)ort for autorrlated  I)roof  systelrls. We bel ieve

4.2 Related  work
that autorllated  proof suprmrt  is important to
a full Iifcryclt: specification Systerrl  such as ‘l’.A[:-

I’here  are sever-d other systertls  in the literature that
‘our desig[!  irlclutlcs r[locl[]lariz:iti{,rl  arlcl  sco[, ir]g, but those

share  our goal of closi]lg the gap t)etwrx!Il  a forrr]al [Cat{lrt,s  liavt,  IIOt bwrl inlplcvtlcrltrfl.
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LJ1’1’, and so dCCiCICd to linlit  the Cxpressivmless  so
as to simplify the construction of an autonlated
prover. AL)I, supports partial furlctions,  whrre
l’Aur)Il’does  notg.

Anna[4]  Anna uses a subset of the target program-
ing language (Ada) with a few additions (irl -
clucling a form of multi-sortecl  quantification),
to formally annotate the program with predi-
cates in such a manner that the predkates can
be checked during runtime.  l’he  specifications
are placed in the code in the fornl of fern I al
comments, where in “]’AU urrthey are separate
from the code. Anna is purposefully nearly
the same language as the program being spec-
ified, where TAU[)IqiS  explicitly not the same
language. Anna has significarlt  machinery to ex-
tract the necessary runtinle inforatation  to check
the annotations, where q’AUI)ITrequires  that this
is clone nlanuatly.  Automated proofs are not ex-
plicitly  supported, but are not excluded except
perhaps for the complications of typing, partial
functions, and quantification.

Larch[7]  I,arch  is a specification notation and proof
system. Specifications are generally written ir~ a
notation specific to the program  riling language
of t}le system being specified, which are then
converted to and analyzed in the I,arch back-
end language, 1, S1,. 1,S1, specifications are not
intended for dynarrlic  corllparison  with progranl
execution, but rather towards the use of proof
tecbniclues  to support assertions made about the
system. 1,S1,  is a first order logic notation.

SEQ-REVIEW[l  1] SE()-RI;VIHV is a
production-quality and heavily used ululti-
purpose file browser that can parse  a wide
variety of files, display projecticms  of the corl -
tents in various graphical and textual forr[ls,
and perform specialized constraint checking. It
has a built-in recursive programr]ling  langua~,c
sinlilar  ixi spir i t  to  AWK, tha t  can  pcrforrll

—
‘ W e  recoguizc  that  there are good arg(lrllerlts  in defense

of partial functiorls[l  O), but made a decisioo  bitsed towards
si[oplifyirlg  the model  of our logic.  We will revisit this decisiou
if it becor}les  a major problenl.

arbitrary cornl)utations  011 the irlpllt.  It would
be possible, but generally very inconvenient
and inefficient, to usc SEQ-RHVIEW  to do the
san)e checks m performed by ‘1’AUIJ1’r. TAU t)rris
positioned as a formal specification and dynamic
a]lalysis tool based upon mathematical logic and
intended  to support automated reasoning, where
SIQRNVIEW’  is positioned as a sophisticated
nlulti-purpose  file brcwser  that perforrus  some
specialized constraint  checks.

SRLT[12]  S}{1;1’  performs white-box testing, using
the SI)IN model checker[13] to verify execution
traces. It conlputes  equivalence partitions of
potential execution traces, and generates test
cases for partitions that have not been tested.
SRI~I’  is primarily intended to test distributed
systems for e.g. deadk)ck,  race conclitions, etc.
S Rlfl’ uses the same whit[:-box approach as lAu-
r)rl’dots, in fact the SRIfI’  logging facility could
be used to genrxate  clata for ‘] ’AUDI”l’.  SRl,lI  is
positioned to test against behavoria.1 specifica-
tions of interacting state machines, where l’Au-
r)rrrworks  with algebraic specifications.

5 P R O J E C T  S’I’ATUS

‘1’Aul)l’l’has been irllplenlentecl and is being used to
verify a software implementation of a microcontroller
(the Intel 8085.4). We found that writing the speci-
fication W*S about orlc fourth as much work as was
the actual implenlentation  of the emulator. Our orig-
inal goal was to apply it to a remote agent spacecraft,
but schedule differences have so far pre~’entcd  us from
doilig so.

‘1’he remaining tools of the ‘1’star project have been
discussed or desigrled  to so~[le level of detail, but none
have berzi inl~derllented,

6 FtJTURE  W O R K

Add autoxnate.d  reasonir:g ‘1’Aur)r[is  desigrled  to
support autonlatecl  rcasonillg,  priruarily  because
we believe that our irltfvldecl  application will re-
sult ill specifications .s0 large that we will necc}
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Fly

autonlated tools to gain contidcnce  in the speci-
fication itself.

it as a hypervisor[14] Although ‘1’AU [1[’[’was
originally conceived ~ a system verification tool
for pre-flight  testing, it’s small size and efficierlt
event-driven checking make it suitable to serve
as an onboard in-flight behavior lI1onitor.  ArIy
violations detected during flight would alert the
ground that the spacecraft is behaving outside
of an acceptable envelope.

Add state-oriented notation TAuDITis able to
track observed behavior  against  a  state-
transition description, but it requires a tedious
group of guarded cornrnands.  We plan to add a
construct to sirnplifi  specification of statecharts.

7 S U M M A R Y
‘1’esting  spacecraft systems that have a high degree of
autonomy requires new testing techniques, because
of the higher sensitivity to the environnlellt  that such
systen~s, by definition, exhibit. l’sTAI{addreSSes  the
issues by automatically generating a large number of
plausible scenarios “near” a given mission profile, and
validates the execution of each against a fornlal  spec-
ification of correct behavior. One component of the
suite, ~’Au D1’I’, has lJeC1l implemented and success-
fully applied to production code.
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