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Abstract

The new breed of autonomous goal-driven space-
craft contain much more onboard capability than
their sequence-driven predecessors, demanding cor-
responding advances in software verification tech-
niques. Although autonomous systeins are determin-
istic, they are highly sensitive to the environment,
such that the response of a system in certain con-
texts must be explored in detail in order to provide
confidence in both the design and implementation.
We describe a system verification strategy and tool
based upon the automatic generation and execution a
large number of tests that are “near” a given nominal
mission scenario, and a novel use of formal methods
to analyze the test results. Results from verifying one
software system bear out the benefits of using forinal
behavior specifications.

1 INTRODUCTION

NASA is moving into an era of increased spacecraft
autonomy[1]- a natural outcome of a desire to reduce
the cost of science data combined with the impact of
light-time communication delays and the availabil-
ity of ever more powerful space-capable computers.

“’I"he work described was performed at the Jet Propulsion
laboratory, California Institute of Technology under contract
with the National Aeronautics and Space Administration.

Autonomy has the potential to decrease the cost of
spacecraft operations, improve reliability, and pro-
vide increased science product volume and quality.
However, before these things can occur, we must pro-
vide a compelling argument that we can address re-
liability concerns over the full product lifecycle.

Traditional spacecraft flight software testing basi-
cally demonstrates that each command works cor-
rectly, and that combinations of commands that are
likely to be used during the mission work properly
together. This has been appropriate and effective,
because the systems are designed to minimize the in-
fluence of environmental factors on the execution of
low-level comnmands.

However, almost by definition, as the degree of
autonomy increases, the sensitivity to the environ-
ment also increases'. Since the system is sensitive to
the environment, and the actua mission environment
can’t be predicted with sufficient accuracy, one must

Y«Aut onomy” is often described as “closing more loops on -
hoard”, but it may also he viewed as an online optimization
problem (e.g. minimize resource consumption, maximize sci-
ence return,optimize a schedule) where the environmenthas
substantial influence on theoutcome of the optimization.It is
the nature of discrete optimization problems that they can be
very sensitive to parameters in the sense that a seemingly small
change in the input can cause a large and “non-linear” differ-
ence in the output. For example, a change in the length or time
of antevent of @ fraction of @ percent can cause a planner algo-
rithimtoemit @ very difrerent plan. We make this distinction
in order to stress theimportance of state exploration.



explore the behavior of the system over a range of
plausible environments in order to gain confidence in
the robustness of the system.

The tools and techniques we propose automatically
generate a large number of plausible environments,
explore the response of the system over the enviro-
ments, and characterize the robust ess so the system.
Our approach is based upon dynamic comparison of
the state trgjectory of the system being tested against
mathematically rigorous (formal) descriptions of the
expected behavior of the system. We propose to use
both black-box (i.e. description in term of initial
state, inputs and outputs only) and white-box (in-
ternal details of the software execution are exposed)
descriptions, because the closed-loop nature of the a-
gorithms will tend to mask some faults and so render
black-box testing incomplete.

We begin with by describing how the differences
between conventional and autonomous spacecraft im-
pact the test and verification problem. We then out-
line our proposed tool suite and show how it addresses
the issues. Finally, we describe the results analy-
sis component in some detail, including some sample
specifications.

2 WHY TEST?

Ultimately, our objective in testing is to improve the
expected science return, and so minimize the incre-
mental cost of science data. Premature spacecraft
failure is the biggest threat to science return, so a
significant part of autonomy software tries to pro-
tect the spacecraft against onboard failures and self-
destructive commanding?. Unfortunately, since an
autonomous system by definition has substantial cor |-
trol over its own fate, it follows that the spacecraft
is highly vulnerable to mistakes within the autonomy
design and irnplementation, and so should be heavily
exercised.

If we stipulate that the spacecraft can't be com-

2Spacecraft have always had a powerful on-board fault pro-
tection capability. Modern auteonomy software enables greater
fault coverage and responses that are more likely to allow the
mission to progress without human involvemeut in the recovery
process.

manded to cause itself permanent harm, then the
next biggest threat to science data return is to com-
mand the spacecraft to do something of low science
value. I low to provide a measure of the science value
of al possible observations a priori is at best an open
research question, because of the difficulty of captur-
ing and euncoding the full trade-off space? It will
thus be a kmg time before it will be rational to d-
low an autonomous system make significant decisions
as to what science data to acquire®. It will there-
fore remain important that we have a method of con-
firming that commands to the spacecraft will provide
good science return, even if maintenance of spacecraft
health is no longer a concern.

3TOOL SUITE

Our tool suite, named T'STAR, covers system testing
tasks ranging from automatic generation of test cases
to automatic results analysis. The purpose of each
component is outlined below. In particular, this pa-
per focuses on results analysis, so Taubitis described
in greater detail later in this paper.

Tgen ‘|kst-case generation. This componeut will de-
rive a number of plausible operational scenarios,
given as input a single nominal scenario and cer-
tain perturbation criteria. For example, it may
be given as input an encounter with an aster-
oid, which it will use to compute a large number
of plausible ways in which the encounter may
actually occur; it will vary timing relationships,
faults, and resource consumption.It also derives
test-specific pass/fail criteria, which is forwarded
to T'AUDIT, where it iS Used to analyze the results
of the tests.

3For example, the Mars Pathfinder scientists (dozens of
them)spend much of the night negotiating the next day’s ob-
servations. It is apparent that the science data is important to
them, and seems unlikely that they would entrust these deci -
sions to an algorithm. We also speculate that it would be very
diflicult to extract their decision processes.

“$'e must decrease the cost of spacecraft, andimprove our
ability to encode thetrade-off space. until it's cheaper (per unit
of science return) to build themwith built-in science decision
making than to command them during the mission.



Texe Test execution. This component will provide a
uniform interface by which test execution is con-
trolled. The actual execution takes place upcm
an existing smulator, testbed, or other vehicle,
typically provided by the project that built the
system that is being tested.

Taudit Results analysis. Test execution results are
analyzed by this component. It infers the state
trajectory of the system being tested by the
contents of various logs and messages generated
during the test, and then validates that trajec-
tory via format predicates derived from various
sources including flight rules, design rules, and
test input.

Tvis Visudization. This component will provide vi-
sualization features for exploring the results of
the results analyzer. In particular, we conjec-
ture that proximity to failure will prove difficult
to sumimarize, and so T'vis will provide for inter-
active exploration of this and other results.

4 Taudit

The purpose of Tauprris to check the state trajec-
tory of the software under test against a mathemat-
ical specification of correct behavior, and to report
any discrepancies. Although TAu pITis a component
of the Tstar suite of automated test tools, it may
also be used standalone to validate a system against
formal specifications.

The ided is that Taupbitis used with a program-
ming discipline that generates code from specifica-
tions, and specifies additional axioms as the code is
written and yet others specific to a particular test
case. Sufficient state trajectory would be exposed
that TAuDITCcould then be used to confirm that there
are no violations of any of the axioms. Of course,
this is not aways possible, and may not even be cost-
effective, depending on the application[2, §2.1]. TAu-
DiTdoes not enforce this ideal, and may be used over
a wide rauge of rigor: from simple application as a
hcav y-duty assertion notation, all the way to full for-
mal specification with critica aspects proven and all
checked dynamically.

Taunrtsupports and encourages an assertion(3] or
annotation [4, 5] style of programming, whereby as-
sumptions made by the programmer are captured in
the form of pre and post conditions][6] and dynami-
cally checked. Ideally (but rarely, if ever), one proves
that the pre and post conditions are complete, con-
sistent, and imply the correct operation of the pro-
gram. TAUDITprovides confidence in the prc and post
conditions at much lower cost, because it confirms
that a given execution does not violate the condi-
tions, rather than attempting to prove that they are
never Vviolated,

The specification of the system to he tested is writ-
ten in"the formal language of TAubnrrT. The math-
ematical logic of TAupitis aroughly a first order
logic without quantification, with a rich set of re-
lational, arithmetic, logical, and bit operators, and
severa useful datatypes (boolean, number-theoretic
integers, floats, sets, and enumerated types). It aso
includes operators to gain access to the previous value
of an expression and to detect a change in the value
of an expression, and the time at which those events
occured, which together make it natural to write an
concise axiomatic specification of the system without
resorting to temporal logics. Non-recursive functions
are provided for expressive convenience, but do not
add to the power of the notation. TAuDITincludes as-
signment, but assignment operates “outside” of the
mathematical logic and is intended to be used to syn-
thesize variables out of complicated functions on the
input, which are then operated upon from within the
logic.®

Our intent is that a suite of domaiu-specific
languages will be developed in the spirit of e.g.
Larch/LCL[7], which arc easier to use than TAu DIT,
arid are compiled into Taup1T. We thus get the best
of two worlds users can work in domain notations,
and TAuDITcan work in @ single formal domain”. A
single improvement to T'AubiTleverages into benefits

50r translated into.

60ur intent is to avoid customizing the tool to particular
applications by giving the users access to significant compu-
tational capability that can beused to transform input data
before processing by the bulk of Taudit.

7In fact even Taudit has two levels of notation: a syntac-
tically rich infix notation for humans, andalisp -like prefix
notation for automated manipulation.



for multiple user donl.sins. Also, TAuDITprovides a
mathematical rigor that could be excessive for sorue
applications and can be hidden by the higher de-
gree of abstraction that may be provided by domain-
specific user friendly notations. This approach was
used in Larch to good effect.

4.1 Examples

Spacecraft are constrained by what are caled “Flight
Rules’. Theserules generally express conditions that
must atways or never occur. Typical flight rules
might be “Never point the camera at the sun”, “Al-
ways keep the antenna within 0.1 radians of the
Earth”, “The fuel heater must be on for the thirty
minutes prior to operating the engine”. We can eas-
ily encode these and similar rules:

# ! Cameracone relative to the gyp must
#1 always be at least 0.2 rads.
invariant cameral

camera_ sun. cone > 0.2;

#! Antenna angle relative to the earth

#! must always be less than 0.1 rads.

invariant antennal
antenna_earth_cone< 0.1;

#! When the engineis turned on, the
#! heater must have been on for at

#! least 30 minutes.
invariant engine3 @T(engine_on)
-> heater_on
& (now-tup(heater_on)) >= 30;

#! The clock must advance by at most
#! 1/8 second.
funcdecl diff(_al) _al - prev(_al);
invariant tick

O <=diff(clk)

& diff(clk)<= 0.125;

Constraints upon the state of the system are ex-
pressed as invariants, as can be seen in these exam-
ples.Kach invariant starts with the “invariant” key-
word, followed by the name of the invariant (used to

uniquely identify the invariant) and then a boolean
expression. Taupitwill confirm that the boolean ex-
pressionis true forallobserved vatuesof the state.

‘["he function “@T()” is true only in the timein-
stant at which the argument becomes true. Similar
functions detect other change conditions. The func-
tion “tup” returns the time at which the boolean ar-
gument last became true. “tdn” and “tch” can ac-
cess the time at which an expression became false or
changed, respectively. TAuDITprovides the variable
“now”, which is the current time.

Assignments operate within the context ofguarded
commands, as can be seen in the following example.
The variable “firstsubframe” is provided by the sys-
tem and is true only for the first iteration through the
guarded commands at any time instant. Invariants
ruay be applied to the state trgjectory that occurs
while the guarded commands are cycling.

guardedcmd dla
firstsubframe & @C(N) & N > O:

go = T,
guardedcmd dlb
go:reps =N,
guardedcmd dlc
go:rslt = 1;
guardedcmd did
go:go = F;
guardedcmd dle
(reps > O):
rslt := rslt * reps,
reps := reps - 1;

We have demonstrated the use of TaubiTto check
the execution of a software emulator for a microcon-
troller (the Intel 18085.4). Each opcode was axiomized,
and then tests that exercise all opcodes were exe-
cuted. The following is a somewhat more detailed
example. Not shown are some simple axioms that
show that allarithmetic is modeled in terms of natu -
ral mumbers, nor are the (many!) declarations shown.

#! eight-bit twos-complement addition.
funcdecl add8(_al,_a2 ) (_al+_a2)%256;

# 1 if _al, else O.



funcdecl bv(_al) (_a1)?1:0;

funcdecl addcommon(_al,_a2)
rA <-- add8(rA,_al)
& fCY <- bv((rA+_al)>255)
& fS <- bv(add8(rA,_al) > 127)
& fZ <- bv(add8(rA,_al) = 0)
& fp <-bv(even_parity(add8(rA,_al)) )
& fAC <- bv((rA%16+_al1%16) > 16)
& nc(_a2,{rA},{});

#1 ADD r 5-6

invariant ADDr op_nns(#blOOOO0000) ->
addcommon{(rSSS ,1);

#1 INR 1 5-8

invariant INRr op_ndn(#b00000100) ->
rddd <- add8(prev(clk,rddd),1)
& fS <- bv(add8(prev(clk,rddd), I) > 127)

& £Z <- bv(add8(prev(clk,rddd),1) = 0)

specification and the concrete program it specifies by
verifying program execution against the formal spec-
ification. In this section we will compare severa of
them with our tool,

ACL2[8] ACL2 is an interesting tool that uses an
executable formalized subset (including recur-
sive functions) of Common Lisp[9] as its nota-
tion. It has a sophisticated theorem prover,
TAU p Ituses a very similar subset of Common
Lisp. Taubpitis restricted to total functions,
where ACI.2 alows theuse of partial functions
at the cost of reduced reasoning capability. TAU-
DIrdoes not have recursive functions, though the
could easily be added: we don ‘t provide them
because we’re trying to simplify automated rea
soning. ACI.2 does not directly support the dy-
namic verification goal of TaAuprr,but see no
reason why it couldn’t be easily adapted to that
use by executing the specification and code on

& fP <- bv(even_parity(add8(prev(clk,rddd),1))}he same inputs and comparing the results of

& fAC <- bv((prev(clk,rddd)%16+1%16) > 1€)
& nc(1,{rddd},{});

‘I'he operator “+” is semantically and syntactically
equiva.len ttotheequality operator “=",but(to date,
informally) conveys the additional information that
the left hand side may have changed during the exe-
cution of the opcode, but therighthand side must not
have changed. The “nc()” function explicitly states
what values are allowed to change: all other state
must have remained unchanged.

The careful reader will aso note that “prev()” has
another argument.The first argument is used to in-
dicate when to latch the previous value: when the
first argument changes, the value of the second argu-
ment is latched. We found that this makes it much
easier to write robust specific ations, since the time
epochs can be controlled from within the specifica-
tion, rather than by when the state variable values
happen to be emitted from the system under test.

4.2 Related work

There are sever-d other systems in the literature that
share our goal of closing the gap between afornal

thetwo computations.

ADL[5] ADI, is used to specify the post-conditions
of functions, and can check that for a particu-
lar execution, the post-conditions do indeed hold
true. Its primary purpose is to formally specify
the semantics of functions written in eg. C++.
The specification is separate from the itnplemen-
tation of the function, as it is for Taubi1. ADL
also has one base language and multiple domain
languages, as does TaupIr. .41)1, does not ap-
pear to have some of our concepts eg. “@T{()”,
latching “prev(})”, and “tch()”, and so is less ex-
pressive in those quasi-temporal areas. It gains
full expressiveness via recursive functions, where
Taubrrdoes S0 via guarded commands that op-
crate outside of the Taubrtlogic. ADL is gen-
erally richer in syntax and modularization than
Taubprr: TAuDITis rather spartan and concise in
comparison®. ADL does not secn to have sup-
port for automated proof systems. We believe
that automated proof support is important to
a full lifecycle specification system such as Tau-

20ur design includes modularization and scop ing, but those
features have not been implemented.



prt, and so decided to limit the expressiveness so
as to simplify the construction of an automated
prover. ADI, supports partial functions, where
Taubitdoes not?.

Anna[4] Anna uses a subset of the target program-
ming language (Ada) with a few additions (in -
cluding a form of multi-sorted quantification),
to formally annotate the program with predi-
cates in such a manner that the predicates can
be checked during runtime.The specifications
are placed in the code in the form of fern . a
comments, where in TAUDITthey are separate
from the code. Anna is purposefully nearly
the same language as the program being spec-
ified, where TAaupITis explicitly not the same
language. Anna has significant machinery to ex-
tract the necessary runtime information to check
the annotations, where TAuDITrequires that this
is clone manually. Automated proofs are not ex-
plicitly supported, but are not excluded except
perhaps for the complications of typing, partia
functions, and quantification.

Larch[7]Larch is a specification notation and proof
system. Specifications are generally written ina
notation specific to the program ming language
of the system being specified, which are then
converted to and analyzed in the Larch back-
end language, 1, I.. 1,51, specifications are not
intended for dynamic comparison with program
execution, but rather towards the use of proof
techniques to support assertions made about the
system. LSL is a first order logic notation.

SEQ-REVIEW]/11] SEQ-REVIEW is a
production-quality and heavily used multi-
purpose file browser that can parse a wide
variety of files, display projections of the con -
tents in various graphical and textual forms,
and perform specialized constraint checking. It
has a built-in recursive programming language
similar in spirit to AWK, that can perform

‘We recognize that there are good argumentsin defense
of partial functions[10], but made a decision biased towards
simplifying the model of our logic. We will revisit this decision
if it becomes @ major problem.

arbitrary computations on the input. It would
be possible, but generally very inconvenient
and inefficient, to use SEQ-REVIEW to do the
same checks as performed by TAuDIT. TAUDITis
positioned as a formal specification and dynamic
analysis tool based upon mathematical logic and
intended to support automated reasoning, where
SEQ-REVIEW is positioned as a sophisticated
multi-purpose file browser that perforins some
specialized constraint checks.

SRLT[12]SRLT performs white-box testing, using
the SPIN model checker[13] to verify execution
traces. It computes equivalence partitions of
potential execution traces, and generates test
cases for partitions that have not been tested.
SRLT is primarily intended to test distributed
systems for e.g. deadlock, race conditions, etc.
SRLT uses the same white-box approach as Tau-
Nrl’dots, in fact the SRIT logging facility could
be used to generate data for T'AUDIT. SRLT is
positioned to test against behavorial specifica-
tions of interacting state machines, where TAu-
pITworks with algebraic specifications.

5PROJECT STATUS

Taupithas been implemented and is being used to
verify a software implementation of a microcontroller
(the Intel 8085.4). We found that writing the speci-
fication was about oue fourth as much work as was
the actual implementation of the emulator. Our orig-
inal goal was to apply it to a remote agent spacecraft,
but schedule differences have so far prevented us from
doing so.

The remaining tools of the T'star project have been
discussed or designedto some level of detail, but none
have beenimplemented.

6 FUTURE

Add automated reasoning TAuDITIs designed to
support automated reasoning, primnarily because
we believe that our intended application will re-
sult in specifications .s0 large that we will need

WORK



automated tools to gain confidence in the speci-
fication itself.

Fly itas a hypervisor[14] Although TAUDITWas
originaly conceived as a system verification tool
for pre-flight testing, it's small size and efficient
event-driven checking make it suitable to serve
as an onboard in-flight behavior monitor. Auy
violations detected during flight would aert the
ground that the spacecraft is behaving outside

of an acceptable envelope.

Add state-oriented notation TAuDITIs able to
track observed behavior against a state-
transition description, but it requires a tedious
group of guarded commands. We plan to add a
construct to simplify specification of statecharts.

7 SUMMARY

Testing spacecraft systems that have a high degree of
autonomy requires new testing techniques, because
of the higher sensitivity to the environment that such
systems, by definition, exhibit. Ts1TAraddresses the
issues by automatically generating a large number of
plausible scenarios “near” a given mission profile, and
validates the execution of each against a formal spec-
ification of correct behavior. One component of the
suite, TAU p1T, has been implemented and success-
fully applied to production code.
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