Contamination Control for Interplanetary Spacecraft

Dr. Jack Barengoltz
Jet Propulsion Laboratory
at 1997 Spacecraft Contamination and Coatings Workshop
Overview

- Comparison of CC for interplanetary missions with Earth orbiting missions
- Specific examples of CC for interplanetary missions
- Future CC issues for interplanetary missions
Unique aspects

- Guidance sensors need to work for extended durations
 - multiple maneuvers (e.g. tcm’s)
 - often long after launch (e.g. orbital insertion at another planet)
- CC close to the sun (<1 au)
- Planetary Protection
- Other CC historical matters
Commonality

- Particles
- Molecular contamination
- Spacecraft instruments usually most sensitive
Particles in FOV of guidance sensors

- Particles released from surfaces and by separations/deployments
 - surface release mostly μmeteoroid impact
 - thermal (diurnal) cycling not present for 3-axis s/c or small far from sun for spinner
 - separations issue common to Earth & interplanetary missions

- Particles may stay near s/c
 - no orbital (non-inertial) “forces”
 - electrostatic fields and charges may be static
Particles in FOV of guidance sensors

● Effects
 ➢ incorrect attitude for a maneuver (common to Earth orbiters & interplanetary s/c, e.g. TDRSS)
 ➢ overuse of attitude control gas
 - Mariner 10 (Venus and Mercury)
 ➢ false star sighting long-term history
 - Voyager (Jupiter, Saturn, Uranus & Neptune)

■ Corrective measures
 ➢ cleaning
 ➢ software and flight operations changes
CC close to the sun

- Thermal control more sensitive to changes in solar absorptance α from molecular contamination
- UV photolysis (darkening) of deposition more prevalent
- Increased outgassing
 - possibly balanced by lower collection rates
 - but not for cold instruments
CC close to the sun

- Effects
 - spacecraft overheating
 - Magellan (Venus)
 - decrease in solar array output
 - Magellan

- Corrective measures
 - better CC, especially bake-outs
 - better mission design
Planetary Protection

- Protection of other solar system bodies from terrestrial contamination (to avoid precluding search for life)
- Has been the principal driver behind CC for interplanetary spacecraft (esp. for particles)
- Now stringent requirements only for Mars and Europa
Planetary Protection

- novel form of contamination - microorganisms
- control mostly by traditional (particle) contamination control methods
 - clean rooms
 - garment requirements
- "cleaning" can be common (alcohol wipe) or different (sterilization)
- verification of cleanliness unique (bio-assay)
Other CC historical matters.

- **Galileo**
 - engine plume contamination analysis for cyclically varying geometry with spun/despun bus
 - data commutator lubricant contamination

- **Mars Observer**
 - possible contamination issue, preventing check valve in propulsion system from sealing properly
Future CC issues for interplanetary missions

- Planetary Protection also requires protection of Earth from potential extraterrestrial hazards
 - Mars sample return is being planned (again)
 - contamination of returned sample by biogenic materials (amino acids, carbohydrates, etc.) or dead "bug bodies" will confound science and possibly keep the sample in quarantine
 - cleaning without organic solvents for sample handling hardware (flight and GSE) is required
Future CC issues for interplanetary missions

- Very small spacecraft
 - molecular contamination sensitivity unknown, should be studied (but very small budgets)
 - more sensitive to particles
 - probably difficult to clean