Mobile Satellite Protocol Testbed

Keith Scott & Pony Estabrook

{Keith.UM, Polly.Estabrook} @jpl.nasa.gov

SCGII
June 16, Pasadena, CA

Outline

- Introduction
 - Challenges to interoperability.
- The Mobile Satellite Protocol Testbed
 - Goal
 - The Mobile Satellite Channel
 - Testbed Capabilities:
 + Accurately model the satellite channel using propagation data.
 + Real-time test capability allows qualitative analysis.
 + Modified versions of standard TCP tools provide detailed logs.
 - Testbed Design

- Example Results
Challenges to Interoperability

- **Terrestrial Networks**
 - High bandwidth
 - Low Delay
 - Low Bit Error Rate

- **Satellite Networks**
 - Range of bandwidths (mobile to VSAT)
 - Longer Delays (LEO MEO GEO)
 - Higher Bit Error Rates (mitigated by coding)

- **Mobile Satellite Networks**
 - Low bandwidth
 - Higher BER

The Mobile Satellite Protocol Testbed

- **Goal:** To assess and compare the various TCP and ATM mods in a mobile satellite environment and to provide the results to manufacturers of TCP and ATM protocol stacks.

- **The Mobile Satellite Channel:**
 - Propagation delay to orbit is considerable (~130ms for CEO).
 - Higher BER than fixed satellite channels
 - Mobiles are power-constrained and have smaller antennas.
 - Coding helps, but low data rate and processing constraints may limit its applicability.
 - The mobile channel is subject to Multipath Fading & Shadowing
Testbed Design

- **Mobile System Being Simulated**

 - Mobile User or Platform (Laptop, PDA, Train, Airplane, etc.)
 - Satellite
 - Groundstation
 - Server or Gateway

- **Testbed Block Diagram**

 - Simulated Mobile User
 - Channel Emulator
 - Groundstation (Server or Gateway)

Testbed Capabilities

- **Hardware channel simulator**, driven by propagation data, provides an inexpensive, accurate, and repeatable platform.
 - Land, Aeronautical, and Marine Mobile channels.
 - Cannot model any IF phenomena (carrier lock, etc.).

- **Qualitative as well as quantitative feedback**.
 - Real measurements are essential to understanding TCP behavior.
 - Real-time simulation allows qualitative analyses that are essential, since many of the driving applications behind the deployment of TCP and ATM over satellites are interactive (http, telnet, e-mail).
TCP Enhancements Being Examined

- **Selective Acknowledgements (RFC 2018)**
 - Provides an option to include selective acknowledgements as opposed to TCP's normal cumulative acknowledgement scheme.

- **Large Windows and PAWS (RFC 1323)**
 - Allows TCP to have more than 65k 01' data in flight at any one time. This may not be necessary for low-rate mobile terminals.

- **Space Communications Protocol Standards (SCPS)**
 - SCPS is an end-to-end protocol developed by NASA for near-earth and deep-space missions, and contains many improvements to TCP that are relevant to the satellite environment.

- **Bellcore’s Protocol Boosters**
 - Bellcore's Forward Error Correcting (FEC) protocol booster provides improved resistance to errors below the network level.
Detailed Analysis of TCP Behavior

Using modified versions of standard TCP analysis tools (tcpdump [Ibl], tcptrace [Ostermann], and xplot [Shepard], we can examine TCP transactions in detail.