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Abstract

In this paper a new algorithm for fast serial
and paralel dynamics simulation of space robots as
characterized by serial chain systems with a float-
ing base is presented. This algorithm is derived b
using a recently developed algorithmic framewor
based on a new Schur Complement factorization of
the inverse of mass matrix, M-l. The new algo-
rithm leads to optimal serial and parallel computa-
tion for the problem, that is, an O(N) serial com-
putation and an O(Log N) parallel computation by
using O(N) processors.
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l. Introduction

The manipulator forward dynamics, or dynam-
ics simulation, problem concerns the determination
of the motion of the system which results from the
application of a set of control forces. The prob-
lem is of paramount importance in the robotics field
where simulation is a fundamental part of the anal-
ysis of manipulator systems. There is moreover con-
siderable motivation for devising fast simulation al-
gorithms, ranging from the need for extensive off-
line simulation capabilities for design and evalua-
tion purposes, to rea-time implementation for con-
trolled simulations and teleoperator training.

Robotic technology offers significant benefits
for space exploration both for unmanned missions
(e.g., Mars exploration) in the form of space tele-
operation and manned mission for which it can re-
duce the risk to and increase the productivity of
astronauts [1]. However, in order to realize these
benefits certain technical problems need to be ad-
dressed. A major problem for space teleoperation
is the unavoidable delay in information transfer.
In the presence of such a delay, a faster-than-real-
time dynamics simulation capability is extremely
valuable since it alows a human operatorto pre-
view several scenarios before run-time [2]. A sec-
ond problem arises in both mauned and unmanned

applications wherein a robot is mounted on a non-
fixed or a floating-base system, such as space sta
tion, space shuttle, or satellite, since in this case
there is a dynamic interaction between robot and
the floating-base. In order to design efficient control
schemes, accurate and fast algorithms are needed to
analyze this interaction and to simulate the behav-
ior of both base and robot.

In brief mathematical terms, the forward dy-
namics problem can be stated as the solution of a
linear system

MO =T-5(Q,Q0=Fr (1.1)

or .
3= M1Fp (2.2)

The vector b(Q, Q) represents the contribution of
nonlinear terms and can be computed by using the
Newton-Euler (N-E) algorithm [3] while setting Q
to zero. The vector Fr = Col{ Fr;}eR" in (1.1)

represents the acceleration-dependent component of
the control forces.

At present, it appears that the development
of serial algorithms has reached a certain level of
maturity. The O(N) algorithms [4,5,6] represent
the asymptotically optimal serial solution for the
problem. However, with the mat urity of seria al-
gorithms, it is clear that any further significant im-
provement in the computational efficiency can only
be achieved through exploitation of paraleism. Ex-
tensive analysis of efficiency of the existing algo-
rithms for parallel computation has been reported
in |-2),7]. This analysis showed that the existing
O(L) agorithms are strictly serial, that is, paral-
lelism in their computation is bounded. As a result,
their parallelization leads to yet O(N) parallel al-
gorithms which are faster than their serial counter-
parts by only a small constant factor.

Motivated by this analysis, we have recently
developed a new formulation for the problem, des-
ignated as the Constraint Force (CF) algorithm,

basedon a novel factorization of M- in form of



Schur Complement [7]. This factorization indeed
provides an algorithiic framework for the develop-
ment of fast serial O(N) agorithms for various dy-
namics problems. More importantly, however, it al-
lows for the first time the development of both timie-
and processor-optimal parallel algorithms, that is,
O(Log N) parallel algorithms with O(N) proces-
sors. In addition to application to serial chain sys
tems [7], the Schur Complement factorization has
also been applied for the control and simulation of
closed-loop systems [8]. In this paper, we present
the application of this new agorithmic framework
to the dynamics simulation of space robots as char-
acterized by serial chain systems with a floating
base.

This paper is organized as follows. In §II, nota-
tion and some preliminaries are presented. A mod-
ified derivation of the CF algorithm for seria chain
systems is briefly reviewed in §1II. The purpose of
this modification is to alow a more straightforward
extension to floating base systems. The application
of the CF algorithm to dynamics simulation of float-
ing base systems is presented in §IV and its serial
and paralel computational efficiency are aso ana
_Iyzg(\j/. Finally, some concluding remarks are made
in §V.

I1. Notation and Preliminaries
A. Spatial and Global Notation

In the following derivation, we use spatial and
global notation, presented in the nomenclature sec-
tion, which allow a compact representation of the
algorithms. For the sake of clarity, the global quan-
tities are shown by upper-case script letters. Here,
only joints with one revolute DOF are considered
here. However, the results can be extended to joints
with different and/or more DOFS.

With any vector v, a matrix ¢ can be associ-
ated whose representation in any frame is a skew
symmetric matrix:

0 —v, vy
v=1| v. O — Vg
—Vy Vg 0
where v_, vy, and v, are the components of v in the
frame considered. The matrix v has the properties
that o' = —dand4,v2 = V,x V,, i.e, it is a vector

cross-product operator. A matrix v associated to
the vector v is defined as

0= % LIJ.. and 7' = [“ﬁ 1 eRE*6 (2.1)

where here (and through the rest of the paper) U
and O stand for the identity and zero matrices of ap-
propriate size. The spatial velocities of two rigidly
connected points A andB are related as

V=iV (2.2)

where P,, ;denotes the position vector from B to
A. The matrix Pa.p has the properties as

PA,BPB,C = PA,C and PA_IB = ]A’B'A (2.3)

which can be easily verified from Eq. (2.1). If the
linear and angular velocities of point B are zero
then ) ) .

Va=PhpVs (2.4)

The spatial forces acting on points A and B are
related as X
Fo= PapFa (2.5)

The spatial inertia of body i about its center of
mass, designated as fi,ci, is given by

R Ji 0 6x6

I:,Ct - [ 0 m.U] eR

The spatial inertia of body 1 about point O, desig-
nated as li, is obtained as

T
I; = S,-I;,0¢S: = [ilt m,-U] (2.6)

rallel azis theo-

Equation (2.6) represents the
inertia.

rem for propagation of spati

A global bidiagonal block matrix PeREN X6V js
defined as

—Pna U 0
) ~Pn_2 U
p= 0 0
0 o —}31 u

Note that, according to our notation, Fi+1,i = Pi.
B. Recursive Equations of Motion

From (1.1) the multibody system can be as-
sumed as a system at rest which upon the appli-
cation of Fr accelerates in space. Note that, (1.1)
describes a globa relationship between the set of ac-
tive forces and the set of resulting accelerations. Al-
ternatively, the equations of motion can be written
in a recursive form by describing the propagation
of spatia accelerations and forces among bodies of
the serial chain as follows (Fig. 1).

Vi =Pl Vioy + HQ; (2.7)

F,=LV,+ PF,, (2.8)



The acceleration-dependent acting forces, Fpy, and
the interbody forces, F;, are related by

Fr,= H'F, (2.9)

Equations (2.7)-(2.9) are spatia representation of
the simplified (with nonlinear terms being excluded)
N-E algorithm.

I11. Schur Complement Factorization
of M-I

A. Interbody Force Decomposition Strategy

In this section we briefly review a recently de-
veloped factorization of M ! [7] to establish the
basis for its application to dynamics simulation of
space robots. This new factorization is based on a
rather unconventional decomposition of interbody
force of the form:

Fi: H,’FT,‘ + W,‘FS,’ (31)

where Fs; is the constraint force. The projection
matrices Hi and W are taken to satisfy the follow-
ing orthogonality conditions:

HIH, = U W!W; = U, W/H; = 0 (3.2)

HH' +WW!=U (3.3)

The above assumes that the projection matrices are

block diagonal in the rotational and translational
coordinateés. This in turn implies that there is no

coupling between the degrees of freedom, thereby
precluding dimensional inconsistency. Furthermore,
the axes of articulation for each joint are orthogo-
na. For a joint ¢ with multiple DOFs, say Ny; <6
DOFs, HieRO*Nri and WieRO*Nei with Nyi+Nei =
6. It should be emphasized the CF algorithm can
also be extended to more complex cases wherein the
axes of articulation are not orthogona [9,10].

B. Factorization of M-I
To derive the new factorization of M-I, let us

first define following global matrix and vector for
i=Ntol:

W = Diag{W;}eR¥*N and Fs = Col{Fs;}eR>Y

Equations (3.1)-(3.3) can be now written in global
form as

F=HFr+WFgs (3.4)
H'H=UWW=U, and W'H =0 (35
HH +WW = U (3.6)

Using matrices P and P!, Eqs. (2.7)-(2.8) can be
written in a global formas

PV =HQO (3.7)

PF =1V (3.8)
From (3.4) and (3.7) it follows that

WPV =0 (3.9)

HPY = O (3.10)
From (3.7) and (3.4) we have
V=I'PF=I'"P(HFr+ WFs) (311
Substituting (3.11) into (3.9)-(3.10) we get
WPIITIPWFs + WPIITIPHFr = O (3.12)
HPI'PWFs + HIPI'PHFr = Q (3.13)
where
A = WHPIZ-IPWeRSN*EN (3.14)
B = WP!T 1 PHeRON*N (3.15)
are block diagonal matrices and
C = HPII 1 PHeRN N (3.16)
is a tridiagonal matrices. Furthermore, both ma-
trices A and C are symmetric positive definite (see
appendix). This giarantees the existence of A™!.
Equations (3.12)- (3.13) can now be written as

AFs+BFr =0 (3.17)

B'Fs+CFr =0 (3.18)
from which Q is obtained as
Q= (C-BAB)Fr (3.19)

In compariosn with 31.2), a factorization of M 1in
form of Schur Complement is then by

M1=C-B'A'B (3.20)
Efficient O(N)serialandO(Log N) parallel so-

lution of (1.2) by using the factorization given by
(3.20) is presented in detail in [7].



IV. Application of CF Algorithm to
Dynamics Simulation of Space Robots

A. Extension of CF Algorithm to serial chain
systems with Floating Base

A floating base (designated as bod¥ 0O) has six
DOFS. This implies that Ho= U and Wo = O. As
a result, a direct application of the CF agorithm to
the systems with a floating base is not possible since
the resulting matrix A will be singular. However,
it is possible to apply a modified version of the CF
algorithm by treating the floating base separately
as follows.

For a floating base, since Wo = O then from
(3. 1) we have ¥y = Frg and hence F. is given. This

additional information is used in modifying the CF
algorithm. The spatial acceleration of floating base

is given by . ) )
Vo = HoQo = Qo (4.2)

where QoeR® represents six DOFS of floating-base.
Equation (2.8) for base (body O) is now written as

F.=1.Q,+ PoFy 4.2)

from which we have

Qo = I (Fo - PoFY) (4.3)
The spatial acceleration of body 1 is given by
‘./1 = f)éQo + H1Q1 (44)

For bodies N to 1, Eq. (3.7) can now be written as

PV =HO+ VW, 4.5)
where Vb 00, . .0, S R)! is a bias accelera-
tion term. T le force propagation for bodies N to

1 is again given by (3.8). Repeating the procedure
of §III.A, given by (3.9)-(3.13) but by using (4.5)
instead of (3.7), it then follows that

AFs + BFy = WV, (4.6)

B'Fs + CFr =0 + HV, (4.7)

Using the decomposition in (3.1) for F) and from
(4.3), the term W'V after some manipulation is
given by

thb = —WII;]W}-S + RTIO (4.8)

where
0
0
W‘I,,‘ "WFs = : (4.9)
1]

WP PyWyFay

R0 = (4.10)

0 ~
Wt PLIT Y (F. - PoHiFyy)

and Z; = Diag{0, O, ... P{Iy" fro}. Similarly, the
term H'V is given by

0
0
HY, = : (4.11)
-~ O ~
H!PLIG Y (Fo — PoFy)
Substituting (4.8)-(4.10) into Eq. (4.6) gives
A'Fs + BFr = R0 (4.12)
where
A = A+ WI'w (4.13)

The matrix A’ is a rank one modification (in block
sense) of A. More precisely, A’ and A differ only in
their last element, that is, 41= WEIT ! Wiwhereas

{ = WEUT + BUIZYP)W,. The matrix 4} is
symmetric and, ass in the appendix, itis aso
positive definite and hence invertible.

B. Serial and Parallel Computational Com-
plexity of CF Algorithm

Thus far, our derivation has been presented in
a coordinate-free form. However, before the imple-
mentation of the algorithm, the tensors and vectors
involved in the computation should be projected
onto a suitable frame. The choice of optima frame
for the agorithm is discussed in detail in [7]. Here,
suffice to mention that al required projections can
be performed in O(N) for serial computation and in
O(Log N)with O(N) processors for parallel compu-
tation. Also, for eflicient serial and parallel compu-
tation, the matrices B and € need not be computed
explicitly and only the explicit computation of ma-
trix A is needed. Multiplication of any vector by
matrices B and C can be performed by using their
factorization in terms of simpler operators given by
(3.15)-(3.16).

A step-by-step description of the agorithm for
simulation of space robots is then given as follows.

Step 1. Compute the F7 for i = N to O by using the

N-E agorithm [3].

SthQ.C(ompsnte R0 from (4.10) and B3T by using
3.15).



Step 3. Form matrix A’ from (3.14) and (4.13) and

solve ' Fg = —BF; + R1p for Fs.

Step 4.Compute the terms H'V,, from (4.11), B'Fs by

using (3.15), and CFr byusing (3.16).

Step 5. Compute @ from (4.7) and Qo from (4.3).

1. Serial O(N) Computation

By using the N-E agorithm the cost of step 1 is
of O(N). The computation of Rri0 from (4. 10) can
be performed in O(1) and the cost of computation
of BFrby using (3.15) is of O(N). The matrix A’
can be formed from (3.14) and (4.13) with a cost of
O(N) and Fs is obtained by solving a block tridi-
agonal system with a cost of O(&V). The cost of
computation of HVe from (4.11) is of O(l). The
cost of computation of B'Fs from (3.15) and CFr
from (3.16) is of O(N). Finaly, the computation of

Q from (4.7) and Qo from (4.3) can be performed
with a cost of O(N) and 0(1), respectively. There-
fore, the overall cost of serial implementation of the
agorithm is of O(N). *

2. Parallel O(Log N) Computation

The computation of the N-E algorithm can be
performed with a cost of O(Log N) by using O(N)
processors [112).l The computation of R0 can be
performed in () on one processor. The computa-
tion of BFr can be aso performed in O(1) by using
Og N) processors. The matrix A’ can be formed in
O{1) with O(N) processors and the block tridiag-
onal system solution for Fs can be performed in
O(Log N) with O(N) processors. The term H'Vs
can be computed in O(1) on one processor and the
computation of B'Fs and CFr both can be per-
formed in O(1) with O(N) processors. The vec-

tors @ and Qo can be both computed in O(1) with
O(N) and one processor, respectively. This implies
an overall paralel complexity of O(Log N) by using
O(N) processors for the agorithm.

V. Conclusion

In this paper we presented a new algorithm for
fast and optima seria and paralel dynamics sim-
ulation of space robots as characterized by serial
chain systems with a floating base. Due to the lack
of space, our discussion was mainly focused on the
mathematical foundation and computational com-
plexity of the algorithm. It should be mentioned,
however, that as for the seria chain systems [7,8]
the use of Schur Complement factorization not only
leads to fastserial and parallel algorithms but it also
provides a deeper physical insight into the structure
of computation. Such an insight can lead to better
understanding of the dynamic interaction between
floating base (eg., spacestation, space shuttle, or
satellite) andthe robot arm and thus the design of
more approptiate cont rol schemes.

It should be also emphasized that the paral-
lel algorithm presented in this paper is aso highly
cthicient for practical implementation.In fact, the
practical implementation of the CF algorithm on
MIMD paralel architectures for a seria chain (fixed-
base) system has shown that a significant speedup
in the computation can be achieved [13]. The para-
lel agorithm of this paper has properties (in terms
of both computation and communication) very sim-
ilar to the algorithm in [13] and hence it should be
aso highly efficient for practica paralel implemen-
tation.
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Appendix

A. Proof of Positive Definiteness of Matrices
Aand C

The positive definiteness of matrices A, C, and
A is established based on the following theorem.

Theorem. If BeR™*™ is positive definite and XeRnx*

has rank k, then X:BXeRF** is also positive defi-
nite.

Proof. See [12, p.140]

The positive definiteness of matrix d, given by
(3.14), follows from a repetitive application of the
above theorem as follows. The matrix Z~'eREN*6N
is the global matrix of spatial inertia and hence
it is positive definite. From its definition it fol-
lows that the matrix PeR¢N*6N has full rank of
6N and hence the matrix P'Z~'eR6V*6N js posi-
tive definite. Since the axes of articulation of each
joint are orthogonal it then follows that the matrix
WeRSN*N has full rank of N which implies that
the matrix A is positive definite. The positive def-
initeness of matrix C, given by (3.16), follows from
a similar argument.

B. Proof of Positive Definiteness of Matrix
Al

The positive definiteness of matrix A’ is es
tablished by showing that, for some nonzero vector
XeR5N, we have XtA'X > 0. To this end, from
(4.13) we have

XAX = X'AX + XYW WX

Since the matrix d is positive definite we then have
X!AX > 0.Now consider a block representation of
vector X as X = Col{X,},i =N to 1, with X;eR>.
From the definition of W andZ, ! it then follows
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Nomenclature

Number of Degrees-Of-Freedom

(DOF) of the system
Position vector from O, to O;,

Pi+1.i ~ Ppi
Maas of link i

Second moment of mass of link i

about its center of mass

F, = 'ﬂf eR®  Spatial force of interaction
: between link i-1 and link i

Fn41€R® External spatial force acting
on the End-Effecter (EE)

Vnsr, VN+1€R°

EE Spatial velocity and

acceleration, point On+

First and Second Moment of mass Global Quantities, i = Nto1l"-

of link i about point Os MeRN*N  Symmetric Positive Definite
Position, velocity, and (SPD) mass m_atrix
acceleration of joint i JeR**N  Jacobian Matrix

Applied (contral) force on jaint i ‘H = Diag{H;} Global matrix of spatial

Angular velocity and acceleration

of link i

Linear velocity and acceleration

of link i, point O;

For ce and moment of interaction

between link i-1 and link i
Spatial axis (map matrix) of
joint i, HieR®** for a joint
with k DOFS
Spatial Inertia of body i about
point oj, fis i

_ ks A2
h —L B! m;L

(t denotes transpose)

Spatial velocity of link i,
point O
Spatial acceleration of link i,

point O;

T = Diag{l;}eRON*N
Q = Col{Qi}eR"

Q = Col{Q:}eR"

Q = Col{Q:}eR"

I = Col{Ti}eRY

V = Col{V;)eReN

Y = Col{V;}eRoV

F = Col{F;}eR®N

axes, HERSV* N tor
system with 1 DOF jaints.
Global matrix of spatial
inert ia

Global Vector of joint
positions

Global vector of joint
velocities

Global vector of joint
accelerations

Global vector of applied
joint forces

Global vector of spatial
velocities

Global vector of spatial

accelerations
Global vector of spatial

interaction forces



