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Abstract

In this paper a new algorithm for fast serial
and parallel dynamics simulation of space robots as
characterized by serial chain systems with a float-
ing base is presented. This algorithm is derived by
using a recently developed algorithmic framework
based on a new Schur Complement factorization of
the inverse of mass matrix, M-l. The new alg~
rithm leads to optimal serial and parallel conlputa-
tion for the problem, that is, an O(N) serial com-
putation and an O(Log N) parallel computation by
using O(N) processors.
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I. Introduction

The manipulator forward dynamics, or dynam-
ics simulation, problem concerns the determination
of the motion of the system which results from the
application of a set of control forces. The prob-
lem is of paramount importance in the robotics field
where simulation is a fundamental part of the anal-
ysis of manipulator systems. There is moreover con-
siderable motivation for devising fast simulation al-
gorithms, ranging from the need for extensive off-
line simulation capabilities for design and evalua-
tion purposes, to real-time implementation for con-
trolled simulations and teleoperator training.

Robotic technology offers significant benefits
for space exploration both for unmanned missions
(e.g., Mars exploratiorl)  in the form of space tele-
operation and manned mission for which it can re-
duce the risk to and increase the productivity of
astronauts [1]. However, in order to realize these
benefits certain technical problems need to be ad-
dressed. A major problem for space telcoperation
is the unavoidable delay in information transfer.
In the presence of such a delay, a faster-ttlarl-real-
tirne dynamics silnulation  capability is extremely
valuable since it allows a human olmr:itor  to pre-
view several sce[larios  twforc run-ti[ne  [2]. A sec-
o n d  problen]  ar’is(!s in ~mth rIIWIIICd aIId ullnlannr’d

applications wherein a robot is mounted on a non-
fixed or a floating-base system, such as space sta-
tion, space shuttle, or satellite, since in this case
there is a dynamic interaction between robot and
the floating-base. In order to design efficient control
schemes, accurate and fast algorithms are needed to
analyze this interaction and to simulate the behav-
ior of both base and robot.

In brief mathematical terms, the forward dy-
namics problem can be stated as the solution of a
linear system

Md=r–b(~,d=~T (1.1)

or ~ = M-~& (2.1)

The vector b(C?, d) represents the contribution  of
nonlinear terms and can be computed by using the
Newton-Euler (N-E) algorithm [3] while setting ~
to zero. The vector 3T = col{~~l}&~N  in (1.1)
represents the acceleration-dependent component of
the control forces.

At present, it appears that the development
of serial algorithms has reached a certain level of
maturity. The O(N) algorithms [4,5,6] represent
the asymptotically optimal serial solution for the
problem. However, with the mat urity  of serial al-
gorithms, it is clear that any further significant im-
provement in the computational efficiency can only
be achieved through exploitation of parallelism. Ex-
tensive analysis of efficiency of the existing algo-
rithms for parallel computation has been reported

Lin 2,7]. This analysis showed that the existing
0( ) algorithms are strictly serial, that is, paral-
lelism in their computation is bounded. As a result,
their parallelizatiorl  leads to yet O(iV) parallel al-
gorithms which are faster than their serial counter-
parts by only a small constant factor.

hlotivated by this analysis, we have recently
developed a new formulation for the problem, des-
ignated a..s the Constraint Force (CF) algorithm,
tmsed rm a novel factorization of M-‘ in forml of
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schul’ Cornpkln(!llt [7].
provides an al~orithrllic

Ttlis  f:l(t{)lizi~ti{)rl  in(ieed
framework for the rievclop-

rnent of fast s;rial O(Ar)  algorithms for various dy-
namics problen]s.  hlore  ilnportantly, however, it al-
lows for the first time the development of both timc-
and processor-optimal parallel algorithms, that is,
O(Log  N) parallel algorithms with O(N)  proces-
sors. In addition to application to serial chain sys-
tems [7], the Schur Complement factorization has
also been applied for the control and simulation of
closed-loop systems [8]. In this paper, we present
the application of this new algorithmic framework
to the dynamics simulation of space robots as char-
acterized by serial c}lain systems with a floating
base.

This paper is organized as follows. In $11, nota-
tion and some preliminaries are presented. A mod-
ified derivation of the CF algorithm for serial chain
systems is briefly reviewed in $111. The purpose of
this modification is to allow a more straightforward
extension to floating base systems. The application
of the CF algorithm to dynamics simulation of float-
ing base systems is presented in ~IV and its serial
and parallel computational efficiency are also ana-
lyzed. Finally, some concluding remarks are made
in $V.

II. Notation and Preliminaries

A. Spatial and Global Notation

In the following derivation, we use spatial and
global notation, presented in the nomenclature sec-
tion, which allow a compact representation of the
algorithms. For the sake of clarity, the global quan-
tities are shown by upper-case script letters. Here,
only joints with one revolute  DOF are considered
here. However, the results can be extended to joints
with different and/or more DOFS.

With any vector v, a matrix t can be associ-
ated whose representation in any frame is a skew
symmetric matrix:

‘=[~y :’ N
where v=, UY, and v: are the components of v in the
frame considered. The matrix Z has the properties
that tit = –G and G1V2  = V1 x V2, i.e., it is a vector
cross-product operator. A matrix 6 asociated to
the vector v is definecl as

[ 1~=ufi [ 1u o ~R6x6 ~2,1)
Ou and tit = —6 u

where  here (and throug}l  the rest of the paper) [J
and O stand for ttlc identity and zero [Ilatrices  of ap-
propriate size. Tile sl):itial  velocities of two rigidly
connected poi~]ts  A :illd B are related as

wtlcre PA, B denotes the position vector from B to
A. The matrix PA,B has the properties ass

which can be easily verified from Eq. (2.1). If the
linear and angular velocities of point B are zero
then

VA = &#B (2.4)

The spatial forces acting on points A and B are
related as

F B = PA,BFA (2.5)

The spatial inertia of body i about its center of
mass, designated as li,ci, is given by

The spatial inertia of body i about point Oi} desig-
nated as Ii, is obtained as

Equation (2.6) represents the ara!ie!  axis theo-
rem for propagation of spatifinertia.

A global bidiagonal  block matrix PC!R6N ‘6N is
defined as

[

JJ
‘PN-I U

o ‘PN-2 u
P= o 0ro 0

0

— u 1
Note that, according to our notation, Pt+l,i = Pi.

B. Recursive Equations of Motion

From (1.1) the multibody  system can be as-
sumed as a system at rest which upon the appli-
cation of fT accelerates in space. Note that, (1.1)
describes a global relationship between the set of ac-
tive forces and the set of resulting accelerations. Al-
ternatively, the equations of motion can be written
in a recursive form by describing the propagation
of spatial accelerations and forces among bodies of
the serial chain as follows (Fig. 1).

F, = I,i{ + P,F,+, (2.8)
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F7, = H: F, (2.9)

Equations (2.7)-(2.9) are spatial representation of
the simplified (with nonlinear terms being excluded)
N-E algorithm.

III. Schur Complement Factorization
of M - l

A. Interbody Force Decomposi t ion Strategy

In this section we briefly review a recently de-
veloped factorization of M – 1 [7] to establish the
basis for its application to dynamics simulation of
space robots. This new factorization is based on a
rather unconventional decomposition of interbody
force of the form:

F i = H~FTa + wiRi (3.1)

where FSi  is the constraint force. The projection
matrices Hi and W i are taken to satisfy the follow-
ing orthogonality conditions:

H~Ha = U, iV~Wi = U, W~Hi = O (3.2)

HiH~ + WiW/ z U (3.3)

The above assumes that the projection matrices are
block diagonal in the rotational and translational
coordinates. This in turn implies that there is no
coupling between the degrees of freedom, thereby
precluding dimensional inconsistency. Furthermore,
the axes of articulation for each joint are orthogo-
nal. For a joint i with multiple DOFS, say iVfa <6
DOFS, Ha&~cxN~i  and  Wi&~cxNci with ~ji+~ci =
6. It should be emphasized the CF algorithm can
also be extended to more complex cases wherein the
axes of articulation are not orthogonal [9,10].

B. Factorization of M - l

To derive the new factorization of M-l, let us
first define following global matrix and vector for
i=~tc)l:

W = Diag{It’i}&J2GNx5N  and 3’s = Col{~Si}eR5N

Equations (3.1)-(3.3) can be now written in global
form as

.F = ?iFT  + W7S (3.4)

‘Ht?i = [J, WiW = U, and Wt?/ = O (3.5)

WUt + Wwt = u (3.6)

Using matrices P am] P ‘, Eqs. (2.7)-(2.8) can be
written in n global forr[) as

PF = Iv (3.8)

From (3.4) and (3.7) it follows that

w~ptti = c1 (3.9)

~tptv = Q (3.10)

I+om (3.7) and (3.4) we have

V = Z-1P3  = z-lP(?ffT + Wrs’) (3.11)

Substituting (3.11) into (3.9)-(3.10) we get

WtPtZ-lPW3s  + WtPtZ-lPH3T  = O (3.12)

7@1-lPWFS  + ?itPtl-~P?lF~  = ~ ( 3 . 1 3 )

where

A = WtptZ-lpYVE$?5NX5N (3.14)

B = WtptX-~p?&Y?5NXN (3.15)

are block diagonal matrices and

C = ~t@~-~P~E~NxN (3.16)

is a tridiagonal matrices. R-mthermore,  both ma-
trices A and C are symmetric positive definite (see
appendix). This uarantees the existence of d-l.

rEquations (3.12)- 3.13) can now be written as

~S+t?~T=O (3.17)

L?tFs + CFT = ~ (3.18)

from which Q is obtained as

~ = (C – B~A-1B)7ZT (3.19)

In compariosn with (1.2), a factorization of M -1 in
form of Schur Complement is then by

J4-1 =C– B’A-lB (3.20)

Efficient O(ZV)seria/andO(  Log N) parallel so
Iution of (1.2) by using the factorization given by
(3.20) is presented in detail in [7].
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IV. Application of CF Algorithm to
Dynamics Simulation of Space Robots

A. Extension of CF Algorithm to serial chain
systems with Floating Base

A floating base (designated as body O) has six
DOFS. This implies that Ho = U and IV. = O. As
a result, a direct application of the CF algorithm to
the systems with a floating base is not possible since
the resulting matrix A will be singular. However,
it is possible to apply a modified version of the CF
algorithm by treating the floating base separately
as follows.

For a floating base, since W’O = O then from
(3. 1) we have F. = F~O and hence F. is given. This
additional information is used in modifying the CF
algorithm. The spatial acceleration of floating base
is given by

Vo == HOQO = Qo (4.1)

where ~oeRG represents six DOFS of floating-base.
Equation (2.8) for base (body O) is now written as

F. = IOQ O + POF1 (4.2)

from which we have

Qc) = I;l(Fo - $oFI) (4.3)

The spatial acceleration of body 1 is given by

VI = P:Qo + HIQ1 (4.4)

For bodies N to 1, Eq. (3.7) can now be written as

pfv = HQ+ Vb (4.5)

11
0, QoPO]~ is a bias accelera-where ~b = 0,0, . . . ““t ‘

tion term. T e force propagation for bodies N’ to
1 is again given by (3.8). Repeating the procedure
of $lll.A, given by (3.9)-(3.13) but by using (4.5)
instead of (3.7), it then follows that

d>s + Bf? = Wtib (4.6)

@~s + C3T  = G + ?ttib (4.7)

Using the decomposition in (3.1) for F1 and from
(4.3), the term W’Vb after some manipulation is
given by

W~~b = –~~~b-’~f’s + fiTIo (4.8)

where

L1
o

(4.10)

“ = Diag{O, O, . . .and Ib P~Z~ ] fro}. Similarly, the

[
o

M’; P: IO- ‘ (F. – POHI F71 )

term fi~~b is given by

Substituting (4.8)-(4.10) into Eq. (4.6) gives

A’Ts + f?& = fiTIO (4.12)

where

A’=A+WtZ;  lW (4.13)

The matrix A’ is a rank one modification (in block
sense) of A. More precisely, A’ and A differ only in
their last element, that is, Al = Wfll– 1 WI where=

A{ = ~/(1~1  + ~~-l~)W1.  T h e  matr~xA{ i s
symmetric and, ass own m the appendix, lt M also
positive definite and hence invertible.

B.  Serial  and Paral lel  Computational  Com-
plexity of CF Algorithm

Thus far, our derivation has been presented in
a coordinate-free form. However, before the imple-
mentation of the algorithm, the tensors and vectors
involved in the computation should be projected
onto a suitable frame. The choice of optimal frame
for the algorithm is discussed in detail in [7]. Here,
suffice to mention that all required projections can
be performed in O(lV) for serial computation and in
O(Log IV) with O(N)  processors for parallel compu-
tation. Also, for ef%cient serial and parallel con~pu-
tation, the matrices B and C need not be computed
explicitly and only the explicit computation of ma-
trix A is needed. Multiplication of any vector by
matrices B and C can be performed by using their
factorization in terms of simpler operators given by
(3.15)-(3.16).

A step-by-step description of the algorithm for
simulation of space robots is then given as follows.

o

[1o Step 1. Compute the XT for 2 = N to O by using the

wtq; ‘ W3.5’ = (4.9)
N-E algorithm [3].

o Step  2. Coml)ute  ~~lo from (4.10) and  B3T by using
Ii’; P; I(; ‘ PO IV, F.q, (3.15).
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Ste;) 3 .  FOIIII ]ll~Ltrix  A’ !10111  (3 .14)  aIl(l (4.13) aIId
Solv(’ A’>.; =  –f{Y, /’ +  “i7’lo for fs.

Step 4. ConlImtc  the terms ‘Ht~/, from (4.11), B’3s by
using (3.15), and C3T  by using (3.16).

Step 5. Compute ~ frolrl (4.7) and ~o from (4.3).

1. Serial O(N) Computation

By using the N-E algorithm the cost of step 1 is
of O(N). The computation of fi~lo from (4. 10) can
be performed in O(1) and the cost of computation
of B& by using (3.15) is of O(N). The matrix A ’
can be formed from (3.14) and (4.13) with a cost of
O(N) and .F.s is obtained by solving a block tridi-
agonzd system with a cost of O(N).  The cost of
computation of ?f~b from (4.11) is of O(l). The
cost of computation of f?~~.s  from (3.15) and CEr
from (3.16) is of O(N). Finally, the computation of

I t  sllou]d be a l s o  elrlpll&sizc’d tllaf  tile paral-
Ic] algorittlm  presented in this palm is also highly
c! ficient for practical irtlpler~lerltatiorl. In fact, the
practical inlplementation  of the CF algorithm on
MIMD parallel architectures for a serial chain (fixed-
tmse) system hasi shown that a significant specdup
in the computation can be achieved [13]. The paral-
lel algorithm of this paper has properties (in terms
of both computation and communication) very sim-
ilar to the algorithm in [13] and hence it should be
also highly efficient for practical parallel implemen-
tation.
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Appendix
O from (4.7) and ~0 from (4.3) can be performed A. Proof of Positive Definiteness of Matrices
with a cost of O(N) and 0(1), respectively. There-
fore, the overall cost of serial implementation of the

A and C

algorithm is of O(N). “ The positive definiteness of matrices A, C, and

2. Parallel 0(L09  Ar) Computation
A / is established based on the following theorem.

The computation of the N-E algorithm can be
performed with  a cost of 0(L09 N) by using O(N)

b
processors [11 . The computation of %!TIo  can be
performed in (1) on one processor. The conlputa-
tion of B7~ can be also performed in 0(1) by using

[
O N) processors. The matrix A’ can be formed in
O 1) with O(N) processors and the block tridiag-
onal  system solution for $’s can be performed in
O(Log N) with O(N) processors. The term ~t~b
can be computed in O(1) on one processor and the
computation of Bt3.s  and C3T  both can be per-
formed in O(1) with O(N) processors. The vec-
tors O and Q. can be both computed in O(1) with
O(N) and one processor, respectively. This implies
an overall parallel complexity of O(Log N) by using
O(N) processors for the algorithm.

V. Conclusion

In this paper we presented a new algorithm for
fast and optimal serial and parallel dynamics sinl-
ulation of space robots as characterized by serial
chain systems with a floating basse. Due to the lack
of space, our discussion was mainly focused on the
mathematical foundation and computational com-
plexity of the algorithm. It should be mentioned,
however, tllt~t as for the serial chain systems [7,8]
the use of Sch?[r Co~rlphwLcnt factorization not only
leads to f~Lst strial and lmrallel  algorithms but  it also
provides ;~ (l(,t~x’r pilysical  insight into ttle structure
of conlput~Lt if)li. Such an illsigtlt  can l~ild to better
understal](lirlg  of tl)c dyrlarnic i[lteractioll  between
floating tmsr (e.g., s[mcc statiorl, space shuttle, or
satel l i te)  :iri[l f tie rol]ot at In ard t}lus tJle [Iesign  of
nlorc  ill)})Iol)I  iilt(’  corltr  x)] scllcvll(s.

Theorem. I f  BEWxn  is positive definite and XERnxk
has rank k, then XtBXE%kxk is also positive defi-
nite.

Proof. See [12, p.140]

The positive definiteness of matrix d, given by
(3.14), follows from a repetitive application of the
above theorem as follows. The matrix 2-1.#Nx6N
is the global matrix of spatial inertia and hence
it is positive definite. I%om its definition it fol-
lows that the matrix PER6NX6N has full rank of
6N and hence the matrix PtI–1ER6Nx6N  is posi-
tive definite. Since the axes of articulation of each
joint are orthogonal it then follows that the matrix
Wdf?5Nx~  has full rank of N which implies that
the matrix A is positive definite. The positive def-
initeness of matrix C, given by (3.16), follows from
a similar argument.

B. Proof of Positive Definiteness of Matrix
A’

The positive definiteness of matrix A’ is es-
tablished by showing that, for some nonzero vector
X.E3?5N, we have XtA’X > 0. To this end, from
(4.13) we have

.YIA’X = XIAX + .Yt WtIb-l WX

Since the matrix d is positive definite we then have
XfA.Y >0. Nc)w consider a block representation of
vector .Y as .Y = Col{.Y, }, i = Ar to 1, ufitll X,CW’.
Frolrl I tle dcfinitior] of W ilIld Ib-’  it ttlerl f o l l o w s
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that

The positiv(: (Icfinitencss of matrix M’/ 1,-1 M’I is eas-
ily established from the above theorem. It then fol-
lows that X; IV{Z~l WI .Y1 >0 and hence X~A’X  >
0 since it is a sum of two positive terms.
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Nomenclature

N

P,,j

m,
J i

hi, ki

Qi, Qt, Qi

Vij VIE 3F

Hi

Number of Degrms-Of-lleedom
(DOF) of the system
Position vector from Oj to Oi,
Pi+l,i  =  Pi
Maas of link i
Second moment of mrws of link i
about its center of mass
First and Second Moment of mass
of link i about point Oi
Position, velocity, and
acceleration of joint i
Applied (control) force on joint i
Angular velocity and acceleration
of link i
Linear velocity and acceleration
of link i, point Oi
Force and moment of interaction
between link i-1 and link i
Spatial axis (map matrix) of
joint i, Hi~~xk for a joint
with k DOFS
Spatial Inertia of body i about
p o i n t  Oj, Ji,i = ~i

[ 1hIi = $ ~:~
(t denot’es transpose)

Spatial velocity of link i,

point Oi

Spatial acceleration of link i,

[1F, = ;i @ Spatial force of interaction
1 between link i-1 and link i

FN+ 1 c~ External spatial force acting
on the End-Effecter (EE)

VN+] , ti/#+I@ EE Spatial velocity and
acderation,  point ON+ 1

Global Quantities, i = N to 1 -

~c~NxN

JE!W’N
W = Diag{Hi}

Z = Diag{Ii}~~Nx6N

Q = Col{Qi}~WN

Q = COI{QI}ERN

Q = COl{Q1}&RN

r = Col{ri]#”

V = COl{Vi}~@N

t = COl{Vi}~@N

7 = COl{I’i}&@N

Symmetric Positive Definite
(SPD) mass matrix
Jacobian Matrix
Global matrix of spatial
axea, ?lcW’Nx N for a
system with 1 DOF joints.
Globaf matrix of spatial
inert ia
Globaf Vector of joint
positions
Global vector of joint
velocitie9
Global vector of joint
accelerations
Global vector of applied
joint forces
Globaf vector of spatial
velocities
Global vector of spatial
accelerations
Global vector of spatial
interaction forces

point 0~

7


