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Hypothesis ranking problems arc an abstract class of
lcarning problems where an algorithm is given a set of hy -
potheses ‘to rank according to expected utility over some
unknown distribution, where the expected ufility must be
estimated from training data.

Hypothesis ranking problems arc an extension of hypoth-
csis selection problems (Chien95), in which alearning sys-
tem attempts to select the best alternative hypothesis from a
set of hypotheses. The distinction between hypothesis rank-
ing and hypothesis selection iSthat in selection the lcarning
algorithm is interested in a single best hypothesis, while in
ranking the learning algorithm must determine the relative
order of all of tile hypotheses!.

Hypothesis evaluation is an important aspect of many ma-
chine learning problems. For example, tile utility problem
in specdup learning can be viewed as a sclection problem
where asingle problem-solving heuristic or strategy is cho-
sen from alarger set of candidates. In this case, the expected
utility istypical ly defined asthe average time to solve a prob-
lem Tile attribute sclection problem in machine learning can
aiso be viewed as a hypothesis sclection problem in which
onc must sclect the best attribute split from a set of possible
attribute splits anti utility is often measured by information
gain. In reinforcementlearning, a system must learn the ap-
propriate action for each context, where utility iSinterpreted
as expected reward (with immediate feedback).

In many of these applications, a system chooses asingle
aternative anti never revisits the decision. In contrast, if the
system is able to investigate several options (cither serialy
or in parallel), such asin beam scarch or iterative broaden-
ing, the ranking formulation is most appropriate. Also, asis
the case with cvolutionary approaches, asystem may need
to populate future alternative hypothescs on the basis of the
ranking of the current population(Goldberg89).

In any hypothesis evaluation problem, always achieving
a correct ranking is impossible in practice, because the ac-
tual underlying probability distributionsare unavailable anti
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"The algorithms and results described in this paper trivially
extend to hybrid ranking-sclection problems in which the system
must select and rank the top A7 out of N hypotheses.

there isalways a(perhaps vanishingly) mail chance that the
algorithms willbe unlucky because oniy a finite number of
samples can be taken. Conscquently, rather than always re-
quiring an algorithm to output a correct ranking, wc impose
probabilistic criteria on the rankings to be produced. While
several families of such requirements exist, in this paper
wc examine two, the probably approximatelycorrect (PAC)
requirement from the computational learning theory com-
munit y (Valiant®4) and the expected loss (EL) requirement
frequently used in decision theory and gaming problems
(?). With the PAC requirement, an algorithm produces a
ranking that with high probability is close to correct (e.g.,
incorrect orderings arc between hypotheses with similar ex-
pected utilities). The EL requirement bounds the expected
loss, where i0ss represents the difference inutilitics between
two incorrectly ordered hypotheses.
The principal contributions of this paper arc:

e Wc define two families of hypothesis ranking algorithms
based on recursive selection and adjacency. We pro-
vide specific details on how to apply them to a probably
approximately correct (PAC) anti expected i0ss (EL) de-
cision criteria.

« We provide empirical results demonstrating the effective-
ness Of these algorithms at achicving requested decision
criteriaon synthetic data.

« Wc provide empirical results showing how these algo-
rithms significantly outperform existing statistical mecth-
ods on real-wcrrid data from a spacecraft design optimiza-
tion application.

Ranking as Recursive Selection: One obvious way to de-
termine aranking #, , . ... H, isto view ranking as recursive
selection from the set of remaining candidate hypotheses.
In this view, tile overall ranking error, asspecificd by the de-
sired con fidence in PAC algorithms and tile 10ss threshhold
in EL algorithms, isfirst distributed among k — 1selection
errors Which arc then further subdivided into pairvise com-
parisonerrors. Data is then sampled until the estimates of
the ’p)airwisc comparison error (as dictated by equation ??
or ?7?) satisfy the bounds set by the algorithm.

Ranking by Adjacency Comparison Another interpreta-
tion of ranking confidence (or loss)is that oniy adjacent
elements in the ranking need be compared, In this case, the



overall ranking error is divided directly into & —1 pairwisc
comparison errors. ‘I’hislcads to the following confidence
cquation for the PAC criteria:
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Abstract

This paper considers the problem of Icarning the rank-
ing of a set of aternatives based upon incomplete in-
formation (e.g., a limited number of observations). At
each decision cycle, the system can output a complete
ordering on the hypotheses or decide to gather addi-
tional information (e.g., observations) at Some cost.
Balancing the expected Utility of the additional infor-
mation against the cost of acquiring the information is
the central problem we address.

The hypothesis ranking problem isa generalization of
the previously studied hypothesis selection problem -
in selection, an algorithm must select the single best
hypothesis, while in ranking, an agorithm must or-
der al the hypotheses. Wc describe two algorithms
for hypothesis ranking and their application for prob-
ably approximately correct (PAC) and expected loss
(EL) learning criteria, Empirical results arc provided
to demonstrate the effectiveness of these ranking pro-
cedures on both synthetic dataset s and real-world data

from a spacecraft design optimization application.

Int reduction

In many learning applications, the cost of information can
be quite high, imposing a requirement that the learning
algorithms glean a much usable information as possible
with aminimum of data. F'or example:

. inspeedup learning, the expense crf processing each train-
ing example can be significant (Tadepalli92).

. In decision tree learning, the cost of using al available
training examples when evaluating potential attributes
for partitioning can be computationally expensive (Mu-
sick93).

. In evaluating medical treatment policies, additional train-

ing examples imply suboptimal treatment of human sub-
jects.

. Indata-poor applications, training data may he very
scarce and learning as well as possible from limited data

may be key.
When one wishes some sort of guarantee on the quality

of a solution, a statistical decision theoretic framework is
uscful. The framework answers the questions: How much

information is enough? At what point do wc have adequate
information to rank the aternatives with some requested
confidence?

This paper focuses on parametric ranking problems, a
genceral class of statistical machine learning problems in
which the goa is to rank a set of alternative hypothe-
scs where the goodness of a hypothesis is a function of
aset of unknown parameters (e.g., (Gratch92; Greiner92;
Kaclbling93; Moore94; Musick93)). The learning system
determines and refines estimates of these parameters by us-
ing training examples, with a secondary goal of minimizing
learning cost.

The principal contributions of this paper arc:

. Wc define two families of hypothesis ranking algorithms
based on recursive selection and adjacency. We pro-
vide specific details on how to apply them to a probably
approximately correct (f" AC) and expected loss (EL) de-
cision criteria.

« Wc provide empirical results demonstrating the effective-
ncss of these algorithms at achieving requested decision
criteriaon synthetic data.

e We provide empirical results showing bow these ago-
rithms significantly outperform existing statistical meth-
ods on real-world data from a spacecraft design optimiza-
tion application.

The remainder of thispaperis structured as follows. First,
we describe the hypothesis ranking problem more formally,
including definitions for the probably approximately cor-
rect (PAC) and expected loss (E1.) decision criteria. We
then define two agorithms for establishing these criteria for
the hypothesis ranking problem - a recursive hypothesis se-
lection algorithm and an adjacency based algorithm. Next,
we describe empirical tests demonstrating the effectiveness
of these agorithms as well as documenting their improved
performance over a standard algorithm from the statistical
ranking literature. Finally, we describe related work anti
future extensions to the agorithms.

Hypothesis Ranking Problems

Hypothesis ranking problems arc an abstract class of learn-
ing problems where an algorithm is given a set of hypotheses



to rank according to expected utiliry over some unknown dis-
tribution, where the expected utility must be estimated from
training data.

Hypothesis ranking problems are an extension of hypoth-
esis selection problems (Chien95), in which alearning sys-
tem attempts to select the best alternative hypothesis from a
set of’ hypotheses. The distinction between hypothesis rank-
ing and hypothesis selection is that in selection the learning
algorithm isinterested in a single best hypothesis, whilein
ranking the learning agorithm must determine the relative
order of a lof the hypotheses'.

Hypothesis evaluation is an important aspect of many
machine learning problems. For example, the utility
problem in specdup lcarning can be viewed as a selec-
tion problem where a single problem-solving heuristic or
strategy is chosen from a larger set of candidates. 1In
this case, thc expected utility is typically defined as the
average time to solve a problem (Gratch92; Greiner92;
Minton88). The attribute selection problem in machine
learning can also be viewed as a hypothesis selection prob-
lem in which one must select the best attribute split from a
set of” possible attribute splits and utility is often measured
by information gain (Musick93). In reinforcement Icarning,
a system must lcarn the appropriate action for each context,
where utility is interpreted as expected reward (Kaclbling93)
2

in many of these applications, a system chooses a single
alter-native and never revisits the decision. In contragt, it’ the
system is able to investigate several options (either serially
or in parallel), such asin beam search or iterative broaden-
ing, the ranking formulation is most appropriate. Also, asis
the case with evolutionary approaches, a system may need
to populate future aternative hypotheses on the basis of the
ranking of’ the current population(Goldberg&9).

In any hypothesis evaluation problem, always achieving
acorrect ranking is impossible in practice, because the ac-
tual underlying probability distributions arc unavailable and
there is always a(perhaps vanishingly) small chance that the
algorithms will be unlucky because only afinite number of
samples can be taken. Consequently, rather than always re-
quiring an agorithm to output a correct ranking, wc impose
probabilistic criteria on the rankings to be produced. While
several families of such requirements exist, in this paper
wc exam i ne two, t hc probably approximately comet (PAC)
requirement from the computational learning theory com-
munity (Valiant84) and the expected loss (EL) requirement
frequently used in decision theory and gaming problems
(Russell92). With the PAC requirement, an algorithm pro-
duces aranking that with high probability is close to correct
(e.g., incorrect orderings are between hypotheses with sim-
ilar expected utilities). The EL requirement bounds thc ex-
pected loss, where |oss represents the difference in utilities

! The algorithms and results described in this paper trivially
extend to hybrid ranking-selection problem in which the system
must select and rank the top A out of N hypotheses.

?Note that the analogous reinforcement learning problem isthe
onc in which we arc learning the appropriate action with immediate
feedback rather than delayed feedback.

hetween two incorrectly ordered hypotheses.
The expected utility of a hypothesis can be estimated
by observing its values over afinite set of training exam-
ples. However, to satisfy the PAC and EL requirements, an
algorithm must aso be able to reason about the potential
difference between the estimated and true utilities of each
hypotheses. Let U; be the true expected utility of hypothesis
i and Iet U, be the estimated expected utility of hypothesisi.
Without loss of generality, let us presume that the proposed
ranking of hypotheses is U> U,> ....>U_ >U,.
The PAC requirement states that for some user-speciiicel ¢
with probability 1-6:
h- |
N\ [UA > MAX (Uigr, -, Un)] o
iz

Correspondingly, let the loss L of selecting a hypothesis 1)

to be the best from a set of & hypotheses #i,. ... Hibe as
follows.

L(Hy, {1, o HY) = MAX(O, MAX (Us, ..., Ur) = U))
2

and letthc loss £ L of aranking Hy, . ... Hibe asfollows.
k- |
RL(Hy o B = 3 LU {0 B G)
1

A hypothesis ranking algorithm which obeys the expected
loss requirement must produce rankings that on average
have less than the requested expected loss bound. Con-
sider ranking tbc hypotheses with expected utilities: U=
1.0, U,= 0.95, U3 = 0.86. The ranking U2> Uj> Us is
avalid PAC ranking for- ¢ = 0.06 but not for ¢ = 0.01 and
has an observed loss of 0.05 + O = 0.05.

However, while the confidence in a pairwise compari-
son between twn hypotheses is well understood, it is less
clear how to ensure that desired confidence is met in the sct
of comparisons required for a selection or the more com-
plex set of comparisons required for a ranking. Equation 4
defines the confidence that U; + € > U, when the distri-
bution underlying the utilities is normally distributed with
unknown and unequal variances.

7=4¢ ((l%»j + ) f > (4)

Dy

where ¢ represents the cumulative standard normal distri-
bution function, anti 7,Ui—j. anti S; _ jare the size, sample
mean, and sample standard deviation of the blocked differ-
ential distribution, rcspeclivcly].

Likewisc, computation of the expected ioss for asserting
an ordering between a pair of hypotheses is well understood,
but the estimation of expected loss for an entire ranking is
less clear. Equation 5 defines the expected ioss for drawing

*Note that in our approach we block examples to further re-
duce sampling complexity. Blocking forms estimates by us-
ing the difference in utility between competing hypotheses on
each observed example.  Blocking can significantly reduce
the variance in the data when tbc hypotheses are not inde-
pendent. it is trivial to modify the tformulas to address the
cases in which it is not possible to block data (sec (Moore94;
Chien95) for farther details).



the conclusion U; > Uj, againunder the assumption of
normality (sec (Chien95) for further details).
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In the next two subsections, WC describe tWo interpreta-

tions for estimating the likelihood that an overal ranking

satisfies the PAC or EL requirements by estimating and

combining pairwise PAC. errors or EL. estimates. Each of

these interpretations lends itself directly to an algorithmic
implementation asdescribed below.

Ranking as Recursive Selection

Onc obvious way to determine a ranking 11,,..., Hj isto
view ranking as recursive selection from the set of remain-
ing candidate hypotheses. In this view, the overall ranking
error, as specified by the desired confidence in PAC algo-
rithms and the loss threshhold in EL algorithms, is first
distributed among k —lselection errors which arc then
furt her subd i vided into pairwise comparison errors. Data is
then sampled until the estimates of the pairwise comparison
crmr (as dictated by equation 4 or 5) satisfy the bounds set
by the algorithm.

Thus, another degree of freedom in the design of recursive
ranking algorithms is the method by which the overall rank-
ing error is ultimately distributed among individual pairwise
comparisons between hypotheses. Two factors influence
the way in which wc compute crmr distribution. First, our
model of error combination determines how the error al-
located for individual comparisons or selections combines
into overall ranking error and thus how many candidates arc
available as targets for the distribution. Using Bonferroni’s
inequality, onc combine errors additively, but a more conser-
vative approach might be to assert that because the predicted
“best” hypothesis may change during sampling in the worst
case the conclusion might depend on all possible pairwise
comparisons and thus the error should be distributed among

all ( , ) pairs of hypotheses*).

Sccond, our policy with respect to alocation of error
among the candidate comparisons or sclcctions determines
how samples will be distributed. For example, in some
contexts, the consequences Of early sclections far outweigh
thosc of later select ions. For these scenarios, wc have imple-
mented ranking algorithms that divide overall ranking error
unequally in favor of earlier sclections®. Also, it is possi-
ble to divide selection error into pairwisc error unequaly
based on estimates of hypothesis parameters in order to re-
ducc sampling cost (for example, (Gratch94) allocates error
rationally).

Within the scope of this paper, wc only consider algo-
rithms that: (1) combine pairwisc error into selection error
additively, (2) combine selection error into overall ranking
error additively and (3)allocate error equally at each level.

*For a discussion of this issue, scc pp. 18-20 of (Gratch93)
38pace congtraintspreclude their description here.

Onc disadvantage of recursive selection is that once a
hypothesis has been sclected, it is removed from the pool
of candidate hypotheses. This causes problems In rare in-
stances when, while sampling to increase the confidence
of some later selection, the estimate for a hypothesis' mean
changes enough that some previously sclected hypothesis no
longer dominates it. In this case, the algorithm is restarted
taking into account the datasarnipled so far.

These assumptions result in the following formulations
(where §(U > {U>, ... .U,})isused to denote the error
drrc to the action of selecting hypothesis! under Equation 1
fromtheset {11, ....H} and6(U; D{U2, .. . .[3}) denotes
the error duc to selection 10ss in situations where Equation

2 applies):

5,., (‘(l/l > 1/2 >, > l/k): 57’cc(lj2 >113 >.,.> llk)
+8 U {U2,.... U})
6
whered, ..(Ux)=0 (the base case for tbc recursion) and
the selection error is as defined in (Chien95):

R
SUM ALz, oy Ui}y = D 8 G
i= 2

using Fquation 4 to compute pairwisc confidence.
Algorithmically, wc implement this by:

1. sampling a default number of timesto seed the estimates
for each hypothesisimean and variance,

2. alocating the error to selection and pairwisc compa sons
as indicated above,

3. sampling until the desired confidences for successive se-
lections is met, and

4, restarting the agorithm if any of the hypotheses means
changed significantly enough to change the overall rank-
ing.

An analogous recursive selection algorithm based on ex-

pected lossis defined as follows.

ELyce(UisUas. > Uh)= FL, cc(Ua > Uy >... > Us)
FELU > U, UyY)
(8)
where EL,..(Ur) = 0 and the selection EL is as defined in
(Chicn95):

k
ELWU D V2. U Y) =Y ELULU) (9
1= 2

Ranking by Adjacency Comparison

Anrrther interpretation of ranking confidence (or loss) is that
only adjacentelements in the ranking need be compared. In
this case, the overall ranking error is divided directly into
k—Ipairwise comparison errors. This leads to the following
confidence equation for the PAC criteria

k-1
(5(,({J'(U| >U,>... > Uk):Z(s,‘,H , (lo)
e 1



And the following equation for the ElL. criteria.

k-1
ELu;(Uy> 02> > U= Y ELUL Uy 1) (1D

iz |

Because ranking by comparison of’ adjacent hypotheses
does not establish the dominance between non-adjacent hy-
potheses (where the hypotheses arc ordered by observed
mean utility), it has the advantage of requiring fewer com-
parisons than recursive selection (and thus may require
fewer samples thanrecursive selection). However, for the
same reason, adjacency algorithms may be less likely to
correctly bound probability of correct selection (or average
loss) than the recursive selection agorithms. In the case
of the PAC algorithms, this is because ¢-dominance is not
necessarily transitive. 10 the case of the EL. agorithms,
it is because expected loss is not additive when consider-
ing two hypothesis relations sharing a common hypothesis.
For instance, the sizc of the blocked differential distribution
may be difterent for each of the pairs of hypotheses being
compared.

Other Relevant Approaches

Most standard statistical ranking/selection approaches make
strong assumptions about the form of the problem (e.g.,
the variances associated with underlying utility distribu-
tion of the hypotheses might be assumed known and equal).
Among these, Turnbull and Weiss (Turnbull84) is most com-
parable to our PAC-based approach®. Turnbull and Weiss
treat hypotheses as normal random variables with unknown
mean and unknown and unequal variance. However, they
make the additional stipulation that hypotheses arc inde-
pendent. So, whileit is still reasonable to usc this approach
when the candidate hypotheses arc not indcpendent, exces-
sive statistical error or unnecessarily large training set Sizes
may result. In the case that tbc hypotheses are truly inde-
pendent, Turnbull and Weiss' technique should be able to
exploit this knowledge and outperform our methods which
do not adopt this assumption.

Empirical Performance Evaluation

Wc now turn to empirical evaluation of (he hypothesis rank-
ing techniques on both synthetic and real-world datasets.
This evaluation serves three purposes. First, it demonstrates
that the techniques perform as predicted (in terms of bourn-
ing the probability of" incorrect selection or expected |0ss).
Second, it validates the performance of the techniques as
compared to standard agorithms from the statistical litera-
ture. I'bird, the evaluation demonstrates the robustness of
the new approaches to real-world hypothesis ranking prob-
lems.

“PAC-based approaches have been investigated extensively in
the statistical ranking and selection literature under the topic of
confidence interval based algorithms (sec (El aseeb85) for areview
of the recent literature).

M ethodology

An experimental trial consists of solving a hypothesis rank-
ing problem with a given technique and a given set of prob-
lemand control parameters. We measure performance by
(1) how well the algorithms satisfy their respective crite-
ria; and (2) the number of samples taken. Since the per-
formance of these statistical algorithms on any single trial
provides little information about its overall behavior, each
trial is repeated multiple times and the results arc averaged
across trials. Synthetic experimental trials were repeated
500 times, while trials on the real-world data were repeated
100 times. Because the PAC and expected loss criteria arc
not directly comparable, the approaches are analyzed sepa-
rately.

Evaluation on Synthetic Datasets

Evaluation on synthetic data is used to show that: (1) the
techniques correctly bound probability of incorrect ranking
and expected loss as predicted when the underlying assump-
tions arc valid even when the underlying utility distributions
arc inherently hard to rank, and (2) that the PAC techniques
compare favorably to the algorithm of’ Turnbull and Weiss
in awide variety of circumstances.

For the synthetic datasets, the utility distributions of the
hypotheses were modeled as random variables defined on
some underlying parameterized distribution. Thus, charac-
terizing a ranking problem consists of choosing some num-
ber of hypotheses to rank and then assigning a distribution
and values for its parameters to the random variables repre-
senting the utility distributions for these hypotheses. In our
case, wc model the utilities as independent normal random
variables with some mean and standard deviation. I’ bus, if
wec let k be the number of hypotheses, then each hypothesis
ranking problem is described by the 24 parameters speci -
fying the expected utility and utility standard deviation for
each hypothesis. In general, while several more parameters
may be required to characterize aranking problem fully’,
the number of hypotheses and the choices for the parame-
tcrs of the utility distributions underlying these hypotheses
characterize the overall difficulty of the ranking problem.

The statistical ranking and selection community uses a
standard family of selection problems with known diffi-
culty to analyze the performance of hypothesis selection
strategies. The method, called the least favorable config-
uration (LLFC) of the population means is that assignment
of the parameters to distributions which is most likely to
cause a technique to choose a wrong hypothesis and thus
provides the mostsevere test of the technique’s abilities.
Under this configuration, all utilities arc independent nor-
mally distributed variables of equal variance. k — 1 of the
hypotheses have utilities with equal expectation, ¢, and the
remaining hypothesis has expected utility ;i +e.

TFor instance, when samples arc allocated rationaly in
(Chien95), it becomes necessary to resign parameters to a cost
distribution as well, or if only atew of the candidate hypotheses
were to be ranked, the number of hypotheses to rank would be
another problem parameter.




Table 1. Estimated expected total number of observations
by PAC dgorithms in the stepped means configuration.
Achicved probability of correct ranking is shown in parcn-

thesis

x| + ST TURNBULL | FAC,ee PAC
EMBGES 2 BCICE N EEE 3

3] on 3 7 (089 101 (0 86) 49 (0.80)
3] 080 7 97 (09Q) FIEOCEN SK(I82)
KIS 3 183 0 VI 152 (0.96) 96 ({1 89y
ERERE Z m ((L)7] 122097) [ %9097
3 R 3 231 96) 204 {055) 146 ((wm

3 un | 2 g &) 63 (093] 103 (0.87)
ST ors 1 3™ 374093 161 ¢075) |
N 090 2 ¢ 245 (0.98) 245(01.97) 163 (DY])
31 0w 3 435(098) AFI(O091) 290 (092)
5 095 2 299 (0 98) 294 (0.9%) 216(1(1)
5 [ oos 3 541 (0.98) 53X(09K) 377 (0.92)
W78 ]2 TSRO | 6@y | S 059 |

:l@ 075 3 TO15 (099) | 1,042{@95) 635 (0.R3)
10 000 2 700 (0 97) 742 (%) 323 (001)
16 ] 090 3 1254 (097) | L3097y ’&3 (0,90)
10| 095 2 821 (1 00) 877 (099 661 (94)
16 | @93 3| 146209 1,569 (0 9%) 1164 (093) |

Because we arc interested in hypothesis ranking problems
rather than selection problems, wc usc a generalization of
the LEC that we call stepped means. In this configuration,
one of the hypotheses is assigned cxpected utility ¢ and
successive hypotheses arc assigned expected utility j7 —ie
fors from 1, ...,k — 1.

In general, problems based on the least favorable con-
figuration become more difficult (i.e., requirc more sam-
ples) when the number of hypotheses & increases, the com-
mon utility variance o”increases, or the difference in the
means of the utility distributions decreases. in the stan-
dard methodology, atechnique iS evaluated by its ability to
achieve a conf{idence of correct selection v* using several
scttings for & and <. This last ratio combines ¢ and ¢ into
asingle quantity which, as it increases, makes the problem
more difficult. This methodology extends to stepped means
directly.

The hypothesis ranking strategies themselves have al-
gorithm control parameters that govern how they attack a
problem. The PAC techniques have time control parame-
ters: an initial sample size 110, adesired confidence of correct
ranking * and an indifference setting €®. The expected loss
techniques have two control parameters: an initial sample
size 1o and aloss threshold 11*.

For our experiments, o = 7, yt = 50, 0 = 64, anti all
other parameters arc varied asindicated.

The observed number of samples required and achieved
accuracy of the PAC. techniques on the stepped means con-
figuration arc shown in Tablc i. The results indicate that all
systems arc roughl y comparable in tile number of examples
required to choose a hypotheses. As expected, the number
of cxamples increases withk,v*, and <. The PAC,q

¥Note that in our formulation of the stepped means test for the
PAC. approaches, ¢ is both the difference in the expected mean
of successive hypotheses and the indifference interva of the a-
gorithm. Thus, ¢ plays the roles of both problem parameter and
control parameter here.

Table 2: Estimated expected total number of observations
of ELL algorithms in stepped means configuration. Observed
average loss of produced rankings.

Parametens Elree EL 45

Mk € HY ] Samples —I;:
12 X0 [ 06 43 17
y 2] o7 n? 05 56 10
3 2 03 139 [ 032 73 0.6
[ 3 [ 2102 235 0.1 139 [1X]
512 1.0 - 320 07 140 13
P? 7 G735 W' 04 169 1 12 |
S 12 0.5 464 (t4 247 0.7
s T 2103 575 02 350 05
W[ 2 10 1,136 0% 572 14
w2107 1325 | 05 668 1.7
nm | 2 05 1,533 03 872 07
W0 | 2 | 028 TAS6 [ 01 1153 04

algorithm required the lecast number of samples hut was
inconsistent in meeting the desired accuracy bound. It is
interesting that the Turnbull and Weiss method did not sig-
nificantly outperform the PAC techniques despitc the fact
that the algorithm assumes that the hypotheses arc indepen-
dent (asisthe case in thc stepped means configuration),
while the PAC. approaches do not make this assumption.

In the expected loss experiments, wc ran the expected loss
hypothesis ranking algorithms on the same stepped means
configurations described above with a range of expected
loss bounds. Table 2 shows the results of this experiment,
displaying the number of samples required to produce a
ranking and the average observed loss for each configura-
tion. These results show that the £1; .. algorithm correctly
bounded theloss and that the /Lq 45 algorithm required less
samples than the EL,.. agorithm, but did not correctly
bound the the expected loss.

Evaluation on Real Datasets

The test of real-world applicability is based cm data drawn
from an actual NASA spacecraft design optimization appli-
cation. Thisdata provides a strong test of the applicability of
the techniques in that all of the Statistical techniques make
some form of normality assumption - yet the data in this
application is highly non-normal.

The goal of the spacecraft design problem is to determine
agoad set of physical dimensions for apenetrator - asmall,
robust probe designed to impact a surface at extremely high
velocity with the goal of performing deep soil sample anal-
ysis. Specifically, we use design anti simulation data from
the Ncw Millennium Deep Space Two mission penetrator
design.

For our casting of the design problem, we hold the shape
of the penetrator constant and rank designs based on of the
variables of penctrator diameter anti length. For a specific
design a sample is taken by choosing impact orientation,
impact velocity, and soil density from aparameterized mul-
tivariate distribution and then calling a complex physical
simulation to determine if and to what depth the penetra-
tor bored into the Martian surface. The goal of the pene-
trator design problem isto determine the dimensions that
maximize tile probability of penetration, and in cases of



Table 3: Estimated expected total number of observations
to rank DS-2 spacecraft designs. Achieved probability of
correct ranking is shown in parenthesis.

k 5y z TURNBULL, PAC, .. PAC, 4
10 [ 0.75 2 534 (0.96) 144 (1.00) 92 (0.98)
10 | 0.90 2 667 (0.98) 160 (1.00) 98 (1.00)
10 ] 095 2 793 (0.99) 177 (1.00) 103 (0.99)

Table 4: Estimated expected total number of observations
and expected loss of an incorrect ranking of 1D S-2 penctrator
designs.

Parameters L, KL, dj

k H Samples Loss | Samples Loss
10 | 0.10 152 | 0.005 77 | 0014
10 | 0.05 200 [ 0.003 90 | 0.006
10 | 0.02 378 0.003 139 0.003

penetration, maximize penetration depth.

Tables 3 and 4 show the results of applying the PAC-
based, Turnbull, and expected loss algorithms to a ranking
problem in which the system is requested to rank 10 pen-
etrator designs®. In this problem the utility function is the
depth of penetration of the penetrator, with those cases in
which the penetrator dots not penetrate being assigned zero
utility. As shown in Table 3, both PAC agorithms signifi-
cantly outperformed the Turnbull algorithm, which is to be
expected because the hypotheses arc somewhat correlated
(viaimpact orientations and soil densitics). Table 4 shows
that the £1, .. expeeted loss algorithm effectively bounded
actual loss but the /L, 4; algorithm was inconsistent,

Discussion and Conclusions

I"here arc anumber of areas of related work. First, there has
been considerable analysis of hypothesis selection prob-
lems. Sclection problems have been formalized using a
Bayesian framework (Moore94; Rivest§88) that dots not re-
quire an initial sample, but uscs a rigorous encoding of prior
knowledge. Howard (Howard70) also details a Bayestan
framework for analyzing learning cost for selection prob-
lems. If onc uscs a hypothesis selection framework for
ranking, allocation of pairwise errors can be performed ra-
tionally (Gratch94). Reinforcement learning work (Kacl-
bling93) with immediate feedback can aso be viewed as a
hypothesis selection problem.

In summary, this paper has dcscribed the hypothesis rank-
ing problem, an extension to the hypothesis selection prob-
lem. Wce defined the application of two decision criteria,
probably approximately correct and expected 1oss, to this
problem. Wc then defined two families of algorithms, re-
cursive selection and adjacency, for solution of hypothesis
ranking problems. Finaly, wc demonstrated the cflective-
ncss of these algorithms on both synthetic and real-world

“True expected utility values are computed by pert’crrtl)it)g a
deep sample Of 20,000 samples. These expected utilities can then
be used to compute PAC ¢ —validity of rankings and actual loss,

datasets, documenting improved perlormance over existing
statistical approaches.
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