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Abstract

Spacecraft design optimization is a difficult problem, due to
the complexity of optimization cost surfaces and the human
experlise in optimization that is necessary in order to achieve
good results. In this paper, wc propose the use of aset
of generic, metaheuristic optimization agorithms (e.g., ge-
netic algorithms, simulated annealing), which is configured
for a particular optimization problem by an adaptive problem
solver based on artificial intelligence and machine learning
techniques. Wc describe work in progress on OASIS, a sclf-
configuring optimization system based on these principles.

1 Introduction

Many enginecring design optimization problems arc instances
of constrained optimization problems. Given a set of decision
variables X and a set of constraints C on X, the constrained
optimization isthe problem of assigning values to X to mini-
mize Or maximize an objective function F'(X'), subject to the
constraints C.

Although constrained optimization isa mature field that has
been studied cxtensively by researcher, there arc a number
of open, fundamental problems in the practical application of
optimization techniques. In particular, the problem of select-
ing and configuring an optimization algorithm for an arbitrary
problem is a significant obstacle to the application of state of
the art algorithmsto real world problems.

We arc currently developing the Optimization Assistant (OA-
SIS) system, an automated, self-configurirrg optimization tool
for spacecraft design these two issues. The goal of OASISiis
to facilitate rapid “what-if” analysis of spacecraft design by
developing a widely applicable, spacecraft design optimiza-
tion system that maximizes the automation of the optimization
process and minimizes the user effort required to configure the
system for a particular optimization problem instance. In the
rest of this paper, we describe initial work on OASIS.

2 Resource-Bounded Black Box Opti-
mization

The problem of globa optimization on difticult, arbitrary
cost surfaces is till poorly understood. The optimization of
smooth, convex cost functions is well understood, and efficient
algorithms for optimization on these surfaces have been de-
veloped. However, these traditional approaches often perform
poorly on cost surfaces with many local optima, since they tend
to get stuck on local optima. Unfortunately, many real-world
optimization problems have such a “rugged” cost surface and
arc thus difficult problems for traditional approaches to opti-
mization.

In addition, many real-worlcl optimization problems arc
black-Im optimization proble,) in which the structure of
the cost function is opaque. That is, it is not possible to di-
rectly analyze the cost surface by analytic means in. order to
guide an optimization algorithm. For example, F'(X) can be
computed by a complex simulation about which the optimiza-
tion algorithm has no information (e.g., to evaluate a candi-
date spacecraft design, we could simulate its operations using
legacy FORTRAN code about which very little is known to the
optimizer except for its /O specifications). Black-box opti-
mization problems arc therefore challenging because currently
known algorithms for black-box optimization are essentially
“blind” search algorithms-instead of being guided by direct
analysis of the cost surface, they must sample the cost surface
in order to indirectly obtain useful information about the cost
surface.

Recently, there has been much research activity in so-called
metaheuristic dgorithms such as simulated annealing [5], tabu
search [2, 3] and genetic algorithms [4] for global optimiza-
tion. These are loosely defined, “general-purpose” heuristics
for optimization that proceed by iteratively sampling a cost
sur-face, and they implement various mechanisms for escap-
ing local optima, Although these algorithms have been shown
to be successful on numerous applications with difficult cost
surfaces, the behavior of these algorithms is still poorly un-



to nodes in the methogram correspond to input parameters for
the component represented by the node, and outputs from a
methogram node correspond to output valucs computed by the
component. MIDAS is implemented as a CORBA object, and
supports a wide variety of methods that can be used by exter-
nal client systems (e.g., a GUI) to manipulate the methograms.
This essentially provides an optimization system with a uni-
form interface for any design model encapsulate.d in MIDAS.
Therefore, our solution to the problem of supporting awide
range of designmodels is to support an interface to MIDAS.
That is, OASIS is designed to be an optimization system that
can be used to optimize any MIDAS model.

Thus, the design model, which constitutes the user input to
the OASIS system, is composed of the following:

. A M i DAS diagram that encapsulates the design model,

« A list of decision variables, as well as ranges of their
possible values (may be continuous or discrete), and

. An output from a methogram node that corresponds the
user’ s objective function value.*

Figure i shows part of aM i DAS methogram for the Neptune
Orbiter model (see Section 4).
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Figure 1: Screen shot of a MIDAS methogram (part of a Neptune Orbiter
model).

3.2 Black-Box Optimization Algorithm Suite

OASIS includes a set of configurable black-box optimization
algorithms, which arc generic implementations of optimization

3The Objective function ¢oyld either be obtained directly from one of the

existing outputs in the methogram, or it could be computed fry adding a new
node that computes, e.g., a weighted linear combination of some set of output
necks

algorithms that provide an interface for dynamic reconfigura-
tion of their control points at runtime. Currently, this consists
of arcconfigurable genetic algorithm [4] areconfigurable sim-
ulated annealing algorithm [5], and some variants of traditional
local optimization algorithms (Poweli‘s Method anti conjugate
gradient algorithm) [6] with random restarts.

3.3 Self-Configuring Optimization System

Given aspacecraft design optimization problem instance in the
form of adesign model, the self-corrfiguriffg optimization com-
ponent of OASIS selects and configures a metaheuristics from
its suite in order to maximize some utility measure (usuaily,
this isthe quality of the design found by the system).

Our approachto optimizer configuration is to view it as a
meta-level heuristic scarch through the space of possible prob-
lem solver configurations, where candidate configurations arc
evaluated with respect to a utility measure, and the godl is find a
configuration that maximizes this utility measure. In principle,
it is possible to do a brute-force search through the space of
possible problem solver configurations. This method isclearly
intractable in general, since the number of configurations is ex-
ponential in the number of control points. Consider aproblem
solver with ¢ control points, each with v valucs; there arc ¢¥
problem solver configurations to bc considered.

Giventhe enormous computational expense of searching
through the space of prablem sol ver configurate ions, onc might
wonder whether the search should/could be avoided altogether.
To avoid scarch completely, there arc two alternatives. The
first is to find a metaheuristic that outperforms all others for
all problem instances (and thereby avoiding the problem of
optimizer configuration altogether). As discussed in Section
2, we rgject this solution asinfeasible. The second aternative
is a syntactic, “lookup-table” approach: classify the problem
instance as a member of some class of problems, then apply
the metaheuristic configuration that is known to work well for
this class of problems. This method can work very wci i if
we happen to have studied the class of problems to which the
particular instance belongs, and we have available a good tech-
nique for classifying the instance as a member Of the class.
This approach, however, is of limited utility if wc encounter
an instance of a class that we know nothing about, or if wc
cannot correctly classify the problem as onc that belongs to a
class for which wc have a good metaheuristic configuration.
I"bus, a purcly syntactic approach does not suffice. A self-
configuring optimization system needs to search the space of
possible metahcuristic configurations-tile challenge isto dis-
cover and apply enough heuristic knowledge to the task to
make it more tractable.

“Indeed, the problems of defining useful notions of classes of problem
instances, and classifying a problem instance as belonging to some particular
classisa challenging pattern recognition problem in itself



4 Example Spacecraft Design Optimize-
tion Problems

In this section, wc describe two specific spacecraft design op-
timization problems to which wc are currently applying the
OASIS system. The first is a low-level optimization of thc
physical dimensions of a soil penetrator microprobe. The sec-
ondisasystem-level optimization of the configuration of the
communication system of an orbiter spacecraft. These ex-
amples arc illustrative of the range of different optimization
problems that arise in spacecraft design.

4.1 The Mars Soil Penetrator Microprobe

Aspart of’ the NASA Ncw Millennium program, two micro-
probes, each consisting of a very low-massacroshell and pene-
trator system, arc planned to launch in January, i 999 (attached
to the Mars Surveyor lander), to arrive at Mars in December,
1999. The probes will ballistically enter the Martian atmo-
sphere and passively orient themselves to meet peak heating
and impact requirements. Upon impacting the Martian surface,
the probes will punch through the entry acroshell and separate
into afore- and aftbody system. The forcbody wi Il reach a
depth of 0.5 to 2 meters, while the aftbody will remain on the
surface for communications.

Each penetrator system includes a suite of highly miniatur-
ized components needed for future micropenetrator networks:
ultra low temperature batteries, pPOWer microclectronics, anti
advanced micro-controller, @ microtelecon ymunications sys-
tem and a science payload package (a microlaser system for
detecting subsurface waler).

The optimization of physical design parameters for a soil
penetrator based on these Mars microprobe is the first testbed
for the OASIS system. The microprobe optimization domain in
its entirety is very complex, involving a three-stage simulation:

« Separation analysis (i.e., separation from the Mars Sur-
veyor),

« Aerodynamical simulation,
« Soil impact and penetration.

Toillustrate the utility of adaptive problem solving, wc now
briefly describe current work on a simplified version of the soil
penetration stage.

Given anumber of parameters describing the initial condi-
tions including the angle of attack of the penetrator, the impact
velocity, anti the hardness of the target surface, the optimiza-
tion problem isto sclect the total length anti outer diameter of
the pencetrator, where the objective isto maximize the ratio of
the depth of penetration to the length of the penetrator. We
maximize this ratio, rather than simply maximizing tile depth
of penetration, since for the Mars microprobe science mission,

the depth of penetration should ideally penetrate at least the
length of the entire penctrator).

Onc of tileinitial condition parameters that has a significant
impact on the structure of the cost surface for this optimization
problem is the soil number, which indicates the hardness of
the target surface. Intuitively, one would expect this to bc
an important parameter, since, for example, it is clearly more
difficult to penetrate harder targets (the penetrator could bounce
off thc target, for example).
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Figure 2: Sample points from cost surface for soil penctrator
microprobe model. Plot of ratio of depth of penetration to
length of penetrator. Soil number= 13 (soft scil). The z-axis
represents the fitness value.
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Figure 3: Sample points from cost surface for soil penetrator
microprobe model. Plot of ratio of depth of penetration to
length of penetrator. Soii number = 7 (hard soii).The z-axis
represents the fitness value.

Figures 2 anti 3 show plots of sample points from the cost



