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York and Liao have shown both theoretically and experimentally that one can
control the phases of an array of coupled oscillators by tuning the oscillators
on the perimeter of the array. They indicated the potential utility of this as a
beam steering technique for phased array antennas. The theoretical
demonstration was carried out using a complicated nonlinear formalism
describing the behavior of injection locked oscillators. We have noticed that,
in the “continuum limit” wherein the number of oscillators increases to infinity
while their spacing is reduced to zero, the theory becomes reminiscent of
electrostatics. In this presentation we develop this analogy and demonstrate its
use in predicting the phase distribution for some given perimeter tuning
configurate ions.
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We begin with a review of the work on beam steering via coupled oscillator
control. We then consider the behavior of oscillators under injection locking
and derive the simplified theory of this behavior in the array context. We then
apply the theory to a few simple examples to illustrate the attainable effects
and compare some of the results with those obtained using the full nonlinear
theory.
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Introduction &

» Consider linear and planar arrays of coupled oscillators.

— Achieve high radiated power through coherent spatial power
combining.

- Usudly designed to produce constant aperture phase.

.Oscillators are injection locked to each other or to a master
oscillator to produce coherent radiation.

.Oscillators do not necessarily oscillate at their tuning
frequency.

.York, et. a. have shown that the phase of each oscillator is
afunction of the difference between the tuning frequency
and the oscillation frequency.

Our purpose in coupling oscillators together is to achieve high radiated power
through the spatial power combining which results when the oscillators are
injection locked to each other. York, et. al. have shown that the ensemble of
injection locked oscillators oscillate at the average of the tuning frequencies of
al the oscillators. Let’s look at this in a bit more detail . . . .
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Consider a single injection locked oscillator. We represent the signals as
comples functions as indicated. In steady state, of course, the oscillator will
oscillate at the injection frequency. The transient (time varying ) behavior is
governed by the indicated differential equation. Using this equation we can
formulate the theory ofa set of coupled oscillators.
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Poisson’s Equation

Here we adapt the preceding differential equation to describe the behavior of a
linear array of coupled oscillators with nearest neighbor coupling. Taking the
contiuum limit of this description leads to Poisson’s equation which, of course,
also arises in electrostatics. The expression on the right of this equation is the
analog of electric charge and is afunction of the difference between the
oscillation frequency of the ensemble and the tuning frequencies of the
individual oscillators. Note that with proper tuning, one can establish the
analog of any desired charge distribution. The solution of this inhomogeneous
differential equation will be the phase distribution over the array. Of course,
solution of this equation is quite straightforward using well known techniques.
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We can obtain the solution using the Green’s function for Poisson’s equation.
We express this Green’s function in the form of a series. Consider the “charge
distribution” corresponding to detuning of the end oscillators in the linear
array. The corresponding phase distribution is obtained by integration of the
Green’s function multiplied by the charge distribution and using the known
summation of the resulting series. Not surprisingly, the solution is a parabola.
Finally, we write the solution in a form which highlights the fact that the sum
of the detunings controls the parabolic (quadratic) terms while the difference
controls the linear terms which give rise to beam steering.
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Symmetrical Detuning
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This plot show the result of symmetrical detuning of the end oscillators. The
dots indicated the corresponding result obtained using the full nonlinear
theory.
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This plot show the result of antisymmetrical detuning of the end oscillators.
The dots indicated the corresponding result obtained using the full nonlinear
theory. This phase distribution results in beam steering.
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Asymmetric Detuning
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Thisisthe result of an asymmetrical detuning configuration. Here again the dots
represent the unapproximated theory.
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Here only the oscillator at one end of the array is detuned. Again the
difference between the approximate and full theories is quite tolerable.
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Poisson’s equation in two dimensions:
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We now move on to the analogous two dimensional case. Here again the
solution is carried out using the Green’s function for the two dimensional
Poisson equation.
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Considering again detuning of only the periferal oscillators, the charge
distribution on the right side of the equation leads to a parabolic phase
distribution. We arrange the result so as to highlight the fact that the
difference in the detuning on opposite sides of the array control the beam
steering while their sum controls beam “spoiling” through parabolic phase
aberration.
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Perimeter Detuning
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This is the result of symmetrical detuning of the perimeter oscillators.
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Linear and planar arrays of coupled oscillators have been proposed
as means of achieving high power rf sources through coherent
gpatial power combining. [ 1][2] In such applications, a uniform
phase distribution over the aperture is desired. However, it has
been shown that by detuning some of the oscillators away from the
oscillation frequency of the ensemble of oscillators, one may
achieve other useful aperture phase distributions. [3] Notable
among these are linear phase distributions resulting in steering of
the output rf bear-n away from the broadside direction. The theory
describing the operation of such arrays of coupled oscillators is
quite complicated since the phenomena involved are inherently
nonlinear. This has made it difficult to develop an intuitive
understanding of the impact of oscillator tuning on phase control
and has thus impeded practical application. In this work a
simplified theory is developed which facilitates intuitive
understanding by establishing an analog of the phase control
problem in terms of electrostatics.

We begin by reviewing the nonlinear equations describing the
behavior of an array of loosely coupled oscillators. [2] The behavior
of the phase of a single oscillator injection locked to an input
signal,
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can be described by the following differential equation.
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where 0=ot +¢,¢ is the phase of the oscillator oscillating at
frequency, o, and
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the locking bandwidth which is inversely proportional to the Q of
the oscillator and A, the amplitude of the oscillation. Now, for an
array of N coupled oscillators, the injection signals are just the
outputs of the other oscillators and the phase of the it oscillator is
described by a differential equation of the form,
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and e.'%is the coupling between oscillators i and j. Limiting the
coupling to nearest neighbors and taking the continuum limit as

the number of oscillators increases to infinity and the spacing
decreases to zero (i becomes a continuous variable, x), results in,
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where Ao, is the mutual locking bandwidth of the coupled
oscillators and <w> is the average of the oscillator tuning
frequencies, o(x). In steady state with small phase differences
between neighboring oscillators, one has,
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which is Poisson’s equation of electrostatics! Similarly for a two
dimensional array one obtains a two dimensional Poisson
equation. From this point, all of the familiar results of
electrostatics apply if one merely identifies the oscillator tuning
with charge density and the phase distribution with electrostatic
potential.

For example, suppose that we detune the oscillators at each end of
a linear array in opposite direction with respect to the average
tuning frequency with the intention of steering the beam as
described by Liao and York. [3] This can be represented as two
delta function charge densities of opposite sign one at each end of
the aperture. The solution for the phase distribution is merely a
linear function as shown in Figure 1. yielding the desired steering



of the beam. This linear solution may, of course, be recognized as
the potential in a parallel plate capacitor. For comparison, the
dots in Figure 1 represent the solution of the full nonlinear
equations with no approximation.

Note that if the two delta functions have the same sign, the average
of the tuning frequencies is changed resulting in a constant charge
distribution in addition to the deltas. This constant term yields a
guadratic solution for the phase distribution as shown in Figure 2.
Of course, various ratios of delta function amplitudes yield
corresponding combinations of linear and quadratic solutions such
as the one indicated in Figure 3. Similar results obtain for two
dimensional arrays wherein, for example, various detunings of the
oscillators on the perimeter of the array yield phase distributions
which are solutions of the two dimensional Poisson equation with
delta functions and constants as sources. Such a phase
distribution is illustrated in Figure 4. This resulted from detuning
of all the perimeter oscillators by the same amount.

Finally, it is noted that this simplified theory makes clear the fact
that any desired slowly varying phase distribution can be realized
if one is willing to detune all of the oscillators. The appropriate
tuning can be ascertained by substituting the desired phase
distribution into Poisson’s equation and determining the resulting
charge distribution.
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Figure 1. Equal and
opposite detuning of the end
oscillators.

Figure 2. Equal detuning of
the end oscillators.

Figure 3. Unequal detuning
of end oscillators.

Figure 4. Equal detuning
perimeter oscillators.
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