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EXTENDED ABSTRACT

The advances in theory and computing technology over the last decade have led to enormous
progress in applying atomistic molecular dynamics (MD) methods to the characterization,
prediction, and design of chemical, biological, and material systems. MD simulation of very large
systems are currently being performed by using massively parallel architectures. However, there
is a fundamental difficulty with time and length scales that obstructs these MD methodologies
for application to some of the most important problems. In fact, with the current technologies it
is routine to consider the MD of large scale systems for a time scale of nanosecond. The problem
is that many important applications require a time scale of a microsecond or more. In order to
achieve such a significant improvement in the computational efficiency, in addition to massively
parallel platforms, new algorithms are needed to allow efficient long-term MD simulation.

There are two major computational steps in the MD simulation: calculation of the interaction
forces and integration of equations of motion (EOM). There has been a significant research effort
on the development of fast algorithms for calculation of interaction forces. A key advance in
the calculation of these forces is the development of the Cell Multipole Method (CMM) with an
optimal cost of O(n) for a system with n atoms [1 .
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In addition to the optimal computational

cost, the CMM has been also shown to be very e cient for massively parallel implementation
rnl

The simplest and most widely used MD methods employ Cartesian coordinates, so that the
EOM for a system with n atoms is written as

where X and F c !R3” are the vectors of Cartesian coordinates and the force acting on the atoms,
and Mc is a h x Sn diagonal mass matrix. Although Eq. (1) is simple, the use of Cartesian
coordinates introduces limitations into the MD simulation due to the inclusion of all atomic
motions. However, in polymer and biological systems, the main concerns are confirmational
dynamics, involving the low frequency, collective motions of the system. Conformational motions
may involve time scales up to microseconds and longer. In contrast, atomistic MD simulations,
must use integration timestep of 1 to 2 femtoseconds (to maintain stability). Consequently, to
simulate a microsecond of confirmational collective motions in a large molecular system requires
a billion timesteps, which is generally quite impractical.

The requirement for a small integration timestep stems directly from the high frequencies of
the vibrating bonds in the atomistic simulation. For confirmational dynamics such motions are
of little interest, and we would like to remove these degrees of freedom from the system. One
approach (implemented in the SHAKE algorithm [3]) uses hard constraints on bonds and angles
to freeze all fast internal vibrations. With the inclusion of constraints, the EOM are no longer
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ODES, as given by Eq. (1), but more complex differential algebraic equations. However, even
with this additional complexity, only slightly longer integration timesteps (2 to 4 femtoseconds)
can be achieved.

In addition to freezing bonds and angles, often it is reasonable to partition subsets of atoms
in the system into completely rigid bodies. Reducing a set of atoms to a single body with just
six degrees of freedom lowers the overall computational cost and eliminates the need to apply
constraint satisfaction algorithms to the atoms internal to the rigid body. Constraints are used
only to tie the linked bodies to each other. A natural and efficient scheme for inclusion of
rigid bodies and linking constraints is to write the EOM using internal coordinates [4-7]. For
a molecular system with m constraints and IV = h – m total degrees of freedom, the EOM are
given by

MQ = F(Q, Q) (2)

where M c !RNXN  is the mass matrix, Q E W’ is the vector of internal coordinates, and F(Q, Q) ~ ?l?~
is the vector of nonlinear terms and interaction forces. Note that, the matrix M, unlike the
matrix Mc, is a dense matrix. In recent approaches, e.g. [4,5], the Lagrangian method is
used for solving (2). In this approach, first the matrix M is eqdicitly computed and then the
linear system in (2) is solved, leading to an overall computational complexity of O(N3) which
is a major limiting factor for simulation of large molecular systems. Most recently, an O(iV)
algorithm has been proposed for solving (2) which avoids the explicit computation and inversion
of matrix M [6]. The implementation of this algorithm at the Caltech’s Material and Process
Simulation Center (MPSC) has shown that a much larger integration timestep (by a factor of
up to 30) over the conventional atomistic can be achieved [7]. However, the main drawback of
this O(N) algorithm is that it is strictly sequential, i.e. , regardless of the number of processors
employed, only a very limited speedup in its computation can be achieved. Since the calculation
of interaction forces can be efficiently parallelized,  it follows that for a successful simulation of
large MD systems in a massively-parallel environment, efficient parallel solution of Eq. (2) is
the key enabling factor.

Motivated by this analysis, we have recently developed the Constraint Force (CF) algorithm
which differs from the previous O(N) algorithms in that it is based on a rather unconventional
strategy for solving (2). In the CF algorithm, which was originally developed for dynamic
simulation of robotics systems and spacecraft [8], a new factorization of the inverse of the mass
matrix M in form of Schw Complements is derived as

&f-l = c _ @A-l~ (3)

where t denotes the transpose. For a molecular system with a serial chain topology, A ~ !WN ‘KN,
B e !I?KNXHN, and c ~ ?l?HNxHN are block tridiagonal matrices, H is the number of degrees of
freedom of each body, and H + K = 6. Further, for systems not containing close-loop, the matrix
A is Symmetric, Positive-Definite (SPD). From (3) and (2), we then have

(j= (c - B’A-lL?)F(Q,  Q) (4)

A sequential implementation of the CF algorithm, i.e., Eq. (4), involves a optimal cost of O(N).
However, the main advantage of the CF algorithm is that it can be fu~ly parallelized, resulting in
a both time- and processor-optimal parallel algorithm for solution of (1 ). That is, an o(~og iv)
algorithm by using O(N) processors. In addition to its theoretical significance by achieving for
the first time such optimal bounds in solving (2), the CF algorithm is also highly efficient for
practical implementation on massively parallel MIMD architectures due to its coarse grain size
and simple communication structure.

In this paper we discuss the theoretical foundation of the CF algorithm and its application to
large scale MD simulation. We first consider a MD system with a serial chain topology, i.e, the
Polyethylene (PE). However, for practical implementation for systems with IV = 103 – 105, even
the biggest massively parallel architectures do not provide enough processors to fully exploit
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parallelism in the CF algorithm. We show that with P < N processors, the CF algorithm can be
optimally implemented with a cost of O(iV/P+  Log P). We present the practical implementation of
the CF and CMM algorithms on an MIMD parallel architecture, Cray T3D, for the Polyethylene.

Many applications of interest involve systems with more complex topology. An example is the
PAMAM-Dendrimer polymer which represents a hyperbranched topology. For such systems, the
matrices A, 1?, and C are no longer tridiagonal but rather highly sparse matrices. We show that,
by using O(IV) processors, the multiplication of these matrices by a vector can be performed in a
fully parallel fashion with a cost of O(1) and involving only a nearest neighbor communication.
This implies the multiplication of a vector by the matrix A-l, which corresponds to a sparse SPD
linear system solution, can be efficiently performed by using the iterative methods, in particular,
the conjugate gradient method. We also develop a more efficient variant of the CF algorithm
for systems with branched topology. For example, considering a branched topology system with
N rigid bodies, each having one or more branches with L bodies (thus forming a system with a
total of NL bodies), this variant of the CF algorithm achieves an optimal computation time of
O(Log N + P) by using O(N) processors.
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