AN UPDATE OF DIRECT METHANOL FUEL CELL TECHNOLOGY

JPL

GERALD HALPERT,
S. SURAMPUDI, S. NARAYANAN
H. FRANK, A. KINDLER, T. VALDEZ
JET PROPULSION LABORATORY

WINDSOR WORKSHOP
ON TRANSPORTATION FUELS
Windsor Ontario, Canada
June 10, 1997
DIRECT METHANOL, LIQUID-FEED FUEL CELL / PEM SCHEMATIC DIAGRAM

D. C. MOTOR

- ELECTRODE

POLYMER MEMBRANE (PEM)

+ ELECTRODE

CO₂
Methanol /water

FUEL
3% Methanol / Water

OXIDANT
Air (O₂)

H₂O, N₂, O₂

H₂O

MeOH

H⁺

H⁺

- ELECTRODE
DIRECT METHANOL, LIQUID-FEED FUEL CELL REACTIONS

Anode \[\text{CH}_3\text{OH} + \text{H}_2\text{O} = \text{CO}_2 + 6\text{H}^+ + 6\text{e}^- \]

Cathode \[6\text{H}^+ + \frac{3}{2}\text{O}_2 + 6\text{e}^- = 3\text{H}_2\text{O} \]

Net Reax \[\text{CH}_3\text{OH} + \frac{3}{2}\text{O}_2 = \text{CO}_2 + 2\text{H}_2\text{O} \]

1 LITER OF CH₃OH CAN PRODUCE ~ 5000 Wh
34% (1700 Wh/l) ACHIEVED THUS FAR
Step 1: Dissociative Chemisorption

CH₃OH + H₂O →s
Pt Ru

Step 2: Surface combination and electrochemical reaction

H⁺ H⁺ H⁺
Pt Ru

H⁺ H⁺ H⁺
Pt Ru

CO₂

electrons
PROPERTIES OF OXYGENATED FUELS

<table>
<thead>
<tr>
<th>FUEL</th>
<th>B. P. (°C)</th>
<th>E°</th>
<th>Ah/g</th>
<th>Wh/kG</th>
<th>Density</th>
<th>Wh/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCHO</td>
<td>-21</td>
<td>1.350</td>
<td>3.57</td>
<td>4820</td>
<td>.82</td>
<td>3952</td>
</tr>
<tr>
<td>CH₃OH</td>
<td>65</td>
<td>1.21</td>
<td>5.03</td>
<td>6086</td>
<td>.82</td>
<td>4976</td>
</tr>
<tr>
<td>C₂H₅OH</td>
<td>78.5</td>
<td>1.143</td>
<td>6.99</td>
<td>7989</td>
<td>.79</td>
<td>6311</td>
</tr>
<tr>
<td>(CH₃O)₂CH₂</td>
<td>47</td>
<td>1.21*</td>
<td>5.64</td>
<td>6826</td>
<td>.89</td>
<td>6075</td>
</tr>
<tr>
<td>(CH₃O)₃CH</td>
<td>100</td>
<td>1.21'</td>
<td>5.06</td>
<td>6110</td>
<td>.97</td>
<td>5927</td>
</tr>
<tr>
<td>H₂ (Lq)</td>
<td>-259</td>
<td>1.23</td>
<td>26.8</td>
<td>32964</td>
<td>.07</td>
<td>2307</td>
</tr>
</tbody>
</table>

DIESEL (KEROSENE)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10000</td>
<td>.82</td>
<td>8200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRIC POWER SECTION
ADVANCES IN DMLFFC/PEM PERFORMANCE

300 mA/cm²

A R AT 20 PSIG, 90°C
FUEL: 3% METHANOL
4” x 6” ELECTRODE AREA

CELL VOLTAGE, Volt

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

CURRENT (Amps)

6 32 48 64 96 2 128

Device Research and Applications Section
PERFORMANCE ON AIR AND OXYGEN

0.56 V attained with oxygen; 0.50 V attained with air

Device Research and Applications Section
Scales linearly as the single cell; works as per design
POWER DENSITY OF THE DMLFFC/PEM

JPL data at 90°C, C, 2.5 atm, 5L/mI
2" X 2" Electrode

POWER DENSITY, mW/cm²

CURRENT (Amps) (based on 160 cm² Electrode)

~300mW/cm² with oxygen -200 mW/cm² with air

DEVICE RESEARCH AND APPLICATIONS SECTION
PROJECTED ADVANCES IN STACK PERFORMANCE
WITH AIR AT 300 mA/cm² & 90°C

State-of Art
1996

- 0.50 volts
- 42% Voltage Efficient
- 80% Fuel Efficient
- 34% Overall

Reduce X-Over
1997

- 0.55 volts
- 46% Voltage Efficient
- 90% Fuel Efficient
- 41% Overall

Reduce X-Over
& Improve Membrane Electrode Assembly
1998

- 0.60 Volts
- 50% Voltage Efficient
- 95% Fuel Efficient
- 47% Overall

WITH LOW CROSSOVER.

HIGHER MeOH CONCENTRATION IS POSSIBLE,

HIGHER CURRENT PROJECTED

DEVICE RESEARCH AND APPLICATIONS SECTION
<table>
<thead>
<tr>
<th>Watts per Liter W/l</th>
<th>344</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watts per Kilogram W/kg</td>
<td>365</td>
</tr>
<tr>
<td>System Output Power (Given), kW</td>
<td>5</td>
</tr>
<tr>
<td>System Output Voltage (Given), V</td>
<td>50</td>
</tr>
<tr>
<td>No. of Cells in Electric Series</td>
<td>91</td>
</tr>
<tr>
<td>DH Voltage for Methanol / O₂</td>
<td>1.25</td>
</tr>
<tr>
<td>Required Cell Performance: Minimum Current Density, mA/cm²</td>
<td>300</td>
</tr>
<tr>
<td>Required Cell Performance: Minimum Single Cell Voltage, VDC</td>
<td>0.55</td>
</tr>
<tr>
<td>Single Cell Active Area, cm² (~ 18cm x 18cm)</td>
<td>316</td>
</tr>
<tr>
<td>System Weight, kg</td>
<td>14.7</td>
</tr>
<tr>
<td>System Volume, l</td>
<td>14.5</td>
</tr>
<tr>
<td>Length of Stack, cm/in</td>
<td>38 /15</td>
</tr>
<tr>
<td>Height of Stack, cm/in</td>
<td>19/7.5</td>
</tr>
<tr>
<td>Width of Stack, cm/in</td>
<td>19/7.5</td>
</tr>
</tbody>
</table>
SIMPPLICITY OF SYSTEM
SIMPPLICITY OF THERMAL AND WATER MANAGEMENT
C₀₂ AND H₂O ARE THE ONLY PRODUCTS
TWO-PHASE ALLOWS SIMPLE C₀₂ REMOVAL
NO CORROSIVE ELECTROLYTES OR SHUNT CURRENTS
AMENABLE TO SCALE-UP
OPERATION AT AT TEMPERATURES TO 95°C
START-UP AT 20°C
APPLICATIONS FOR THE DIRECT METHANOL, LIQUID-FEED FUEL CELL

BATTERY REPLACEMENT
TRANSPORTATION
LIGHT DUTY VEHICLES
EMERGENCY POWER
CONSUMER TOOLS
MARINE APPLICATIONS
COMMUNICATIONS
MOBILE POWER
DIRECT METHANOL, LIQUID-FEED FUEL CELL CONCEPT

- Uses 3% liquid methanol/water as the fuel
 - Air \((O_2) \) as the oxidant

- Fuel mixture enters anode chamber
 - Produces protons \((H^+)\) and \(CO_2\)

- The polymer electrolyte membrane (PEM) separates the two electrodes
 - Provides the path for the \(H^+\) to transfer from the anode to cathode

- \(O_2\) flows into the cathode chamber
 - Reacts with \(H^+\) to produce water
DIRECT METHANOL, LIQUID-FEED FUEL CELL CONCLUSIONS

- DIRECT METHANOL, LIQUID-FEED FUEL CELLS HAVE A BROAD RANGE OF APPLICATIONS FROM THE LOW WATTS TO MULTI-KILOWATT.
- THE TECHNOLOGY DEVELOPMENT EFFORT IS PRESENTLY SUPPORTED BY GOVERNMENT, PRIVATE INDUSTRY, AND RESEARCH INSTIUTES
- COST SHARING BY INDUSTRY HAS ENABLED THE TECHNOLOGY TO MOVE FORWARD FROM THE LABORATORY
- THE JPL DMLFFC HAS THE HIGHEST PERFORMANCE AND PRESENT TECHNOLOGICAL ADVANTAGE WORLDWIDE
- SUPPORT NEEDED TO DEMONSTRATE STACK AND SYSTEM OPERATION TO MOVE THE TECHNOLOGY INTO COMMERCIALIZATION
ACKNOWLEDGEMENT

The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors also wish to acknowledge the collaboration of A. LaConti and J. Kosek of Giner Inc. and G. Olah and G.K. Surya Prakash of USC.