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VIGILANTE js an automated recognition and tracking system that closely integrates a sensing platform with
a very large processing capability (over 2 TeraQPS).The architecture currently consists of an optical bench with
multiple sensors, a large parallel analog pre-processor, and a digital 512 processor, parallel machine. Preliminary
results on target detection and orientation are presented for an algorithm that is suitable for the VIGILANTE
architecture. The technique makes use of eigenvectors calculated from image blocks (size 32x32) drawn from video
sequences containing rocket targets. The eigenvectors are used to reduce the dimensionality of frame-lets (size
32x32) from the larger sensor images. These frame-lets are projected on to the eigenvectors and the resultant
values are then used as an input pattern to a feed forward neural network classifier, A description and evaluation
of this algorithm (including precision limitations) with respect to VIGILANTE is provided. Experiments using
this technique have generated near 99target and non-targetimagesand close to 97% identification of the rocket
type.
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1 Introduction

The VIGILANTE project seeks to develop an integrated sensor, image processing system with the ability to
detect, recognize and track a target object in real time (30 frames per second).Toaccorplish this, an analog
neural network processor (31) ANN), designed to perform 64 concurrent vector inner product operations (1x4096
dimensions) every 250 nanoseconds is used to process a 64x64 sub-window (frame-let) of a larger sensor iage.
A column or row loading, digital to analog input device (CLIC)can grab 1 x64 pixels in an image frame and
provide the neural processor with an analog 64x64 window of the 1nage at operating speeds. A total of 64 separate
convolutions of a 256x256 umage ant] the 3DANN’s 64x64 masks can be performed in about 1 6 milliseconds. A
large, digital SIMD computer provides post-processing support andimage classification for the analog processor.

The algorithms implemented to perforim the detection and recognition functions need to make use of the large
processing bandwidth provided by the analog processor to effectively exploit its advantages over other processing
systems. Fortunately, a large number of image processing and understanding algorithms employ the inner product
as a key component in image evaluation. linage pre-processing algorithms such as sharpening, blurring, and edge
detection; template matching or spatial correlation aucl convolution algorithins; and dimensionality reduction for
classification; employ the inner productinderiving their respective results. In this paper we describe a detection
and recognition neural network algorithin that is easily implemented on the VIGIL ANTFE architecture. We provide
prelimminary detection results using this classifier on asequence of rocket nnagery provided by Ballistic Missile
Defense Organization (BMDO).



2 VIGILANTYE. Description

The sensing component of VIGILANTE, cadls for two visual sensors (one with cent rollable zoomlens),and a
sensor each for infra-red (IR) and ultra-violet ([J\'). Thesensing platform is to be mounted on a gimbal to allow
real time tracking to be performed. Initial target acquisition and pointing is via the detectionsystem or external
to VIGILANTE (eg. radar). An image (size 256x256) from a selected sensor isread into a frame buffer at video
rates for usc by the rest of the system. The control of the gimbal and the selection of the sensor is performed by
the control logic that sits on a host P6 machine.

The processing path of VIGILANTYLE consists of digital loading device (CLIC) that transforms the digital sensor
image to 64x64 analog windows that are then presented to the analog processor (3DANN)in paralel. The analog
processor performs 64 concurrent inner products with its stored templates and outputs these values every ’'250
nano-seconds. These values are transformed back to digitaland feel into a 512 processor SIMD parallel computer
(1'02)). It is here where the interpretation aucl classification algorithms are performed. These results are then sent
to a host processor which makes appropriate state changes for the VIGILANTE machine.

The central component of VIGILANTE is the 3DANNmodule. It has 64 64x64 digitally specified weight
templates. The inner product of each template and an analog conversion of a 64x64 frame-let from the current
sensor window is evaluated every 250 nanoseconds resulting in a 64 dimensional output vector, v-

64r64

v = Z cj*1i;
7=1

where ¢ is a 64x64 input image and 1" is the matrix defined by the templates. The templates in the 31) ANN module
are specified with 8 bit precision. A full set of templates (64) can be loaded in approximately 1 millisecond.

The 31) ANN is supplied an analog 64x64 frame-let each operation by the CLIC.I'he CLIC loads asingle
1x64 column or row of pixels from the buffered image each time step and converts 64x64 pixels to analog values
which are then dumped to the 31) ANN in parallel for evaluation. T'he pixels are retained in the CLIC circuitry in
digital format until shifted out. All 64 convolutions of a 256x256 image with the 64x64 31DANN templates requires
approximately 16 milliseconds.

In order to do template matching, the CLIC also calculates the energy of each column or row it loads. The
value is sent to the and provides this value to the 10 Pwhich keeps track of the total energy in the window. This is
important when trying to determine the image location withleast imsmatch energy, M, for image |, and template
1. 1t is defined as follows- B )

M(p,q) = X(!(m ap,n+q) - T(m )’

m,n
expanding the right side gives-
2

M(p,q) = Z (](m 44 q) = 2(mA4 p,n4 )T, n) + T(m,n) )

m,n

As we are generally interested in the template with least mismatch energy, findingthe maximum for the inner
product between '1'and | would be sufficient provided that all templates were normalized (we could ignore the
72 term) and the energy of each window (the I? term) could be determined. I the window energy term is not
available concurrently with the inner product results from the 3DANN, the convolution outputs from each template
would need to be stored and updated after the normalization terins were calculated. Thiis would significantly delay
processing and limit the eflectiveness of template matching in VIGILANTE.

The 64 analog values generated by the 31D ANN and the energy term calculated in the CLIC are converted to 8
bit digital values and are passed into a 512 processor SIMD machine. 1t consists of 4, 128 processor CNAPS boards,
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distributed by Adaptive Solutions in Beaverton, Oregon.T'he set of processors aud memory provide storage for
partial results, perform post-processing operations on the 31D ANN output, and evaluate the processed information
for system control and image understanding. Iigure 1 shows the architectural layout of the VIGIL ANTE image
processing system

3 Rocket Imagery

Todevelop and evaluate the algorithms used to accomplish real time tracking of targets, the VIGILANTE
team is currently collecting a suitable database of digital video 1mages containing potential targets. Although the
VIGILANTE system shouldbe capable of tracking a widerange of target objects, thisreport concentrates on
airborne rocket targets. The database used for these preliminary tests was made available by BMDO and consists
of relatively long range, up looking, missile sequences

Typically, a frame contains a single target object in a clutter free sky. In general,no details of the missiles
can be made out in any of the frames, the target object consists of a few bright pixels (1 0-20) and in some cases,
an extensive plume. The images in the database suffer from asmall dynamic range and considerable noise which
can be attributed to digitization and the poor quality of the video tape. There are three distinct image sequences,
each with a different type of missile. The sequences are froin 10-30 seconds in duration with 30 individual frames
for each second. Figure 2 shows examples of the three missile sequences at the beginning, middle, and end of the
digitized portion of video.

All images were linearly stretched over the entire 8 bit intensity range and cropped to 256x256. Care was
taken to insure that the target was still present in cach of the images. Theindividual images were labeled with
the location of the target within the frame andthe direction of the plume with respect to the image. The plumne
direction values could take any of the eight major compass headings (N,NW,W SW S SII E,NE) where N indicates
the top of the image. The data from the sequences were dividedinto training and test sets.

The goal of the detection algorithm is to determine whether or not a target exists in a given window and if it
does, provide the direction of the plume.Thetraining data is provided to set classifier parameters (by learning
for example) while the testing data is used to evaluate the classifier (i.e. determine how well it generalizes to
novel data).*To facilitate this process thetrainingaund test set images were further modified by extracting 32x32
non-target (selected randomly) and target patches from al of the images. In addition, rotations were performed
on the target data to provide a more comprehensive test of both pluine directionand sensitivity of the classifier
to orientation. The size of the test ancl training sets are 400 and 1200 images respectively with equal nummbers of
target and non-target patches. Fxamples of the targets from each of the missile typesalong with ]lon-targets can
be found inYigure 3.

4 Algorithm Description

To demonstrate the flexibility of the VIGIL ANTE design and architecture with respect to image processing,
a detection algorithm suitable for the systemis described and tested on the rocket immagery. The algorithm was
developed and tested initially using full floating point precision (4 bytes). Insubsequent experiments, the precision
of the templates and the resultant inner product were restricted to 8, 6, and 4 bits to provide amore realistic
appraisal of the expected performance of suchanalgorithin used on VIGIL ANTLE. The algorithm we evaluated
on the rocket database consists of two stages:

1. The image window to be evaluated is projected onto cach of n distinct inasks of the same dimensionality.
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Figure 3: Examples of 32x32 windows extracted forinthe database for training and evaluation.
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2. Then dimensional output vector serves asinputto a classifier that determines if a target is presentand if
it is, the direction of the plume.

IFigure 4 shows the mapping of the algorithm to the VIGIANTE architecture. The projections, a simple
inner product, are implemented by the 31 ANN. The CL1C aud I'rame Buffer are used to select the window to
be evaluated and finally, the 1'01' implementsthe classifier. Inthis study, a simple feed forward neural network
is used to classify the windows. A single hidden layer employing asigmoid activation! functionin its units (the
nutnber of units inthis layer was allowed to vary) feeds 5 output variables labeled-- target'N’\V*S'}C.Similar
classifiers have beendeveloped and tested onthe CNA I'S processors providing  satisfactory results .*!!

Iach sub-image block is evaluated independently by first projecting the 32x32 hnmage patches on each of n
nasks and then providing these out puts to the ncural network for classification. 1'he mask are used to reduce the
dimensionality of the data from 32x32 to n. Such a reduction should simplify the underlying statistical problem
by reducing the number of free parameters and enhancing the ability of the classifier to generalize. Dimensionality
reduction has been used reliably inanumber of image recognition problemns (wherethe “curse of dimensionality”
is a [particularly pressing problein®)including view invariant ohject recognition,'>®° face rccognitiong'l"ﬂ”'i'5 and
cmotion classification of faces, 1413
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rigure 5. Fligenvectors developed from target ancl non-target 32x32 patches.

Of course the selection of the masks used toreduce the dimensionality of the data is of great importance. A
poor set of masks will decrease tile effective signal to noise ratio resulting in poor discrimination between targets

and nontargets. However, finding a good set of filters almost invariably depends on the set of images being
evaluated. Clutter, occlusion, sensor noise, lighting dependencies, views, etc. make detection of even well modeled
objects extremely difficult. One approach used to minimize some of these problems is to design the masks from
actual sensor views of the object.!® Typically interesting features are located on the object or ﬁie object itself is
centered (as was the case for the rocket data) and priuncipal components is used to extract a set of eigenvectors
ordered with respect to the variance (by eigenvalues).

The eigenvectors of aset of imaages, I, can be obtained using the technique outlited by Turk and Pentland.®
Thev found the eigenvectors, fyy of the antacorrelation matrix M (A = I'[), by using SVD. A set of elgenvectors
E, of suitable dimension can then e obtained by matrix multiplication- 7 = IEjy;. Twosuch sets of eigenvectors
are presented in Figure 5. The set labeled ”Target Eigenvectors” was qenerated using the 32x32 targets in the
train ing set. The other set was generated frorlltllclloll-target examples in the training got o, sets of eigenvectors
hovn banyg niend encracefullu in Aiffarapt claceifieatian tacks One advantageof the non-tareet siaenvectors is that
they could serve as the masks for a large number of different classifiers’ ;) < 2- the target eigenvectors’ probably
only suitable for the particular targets from which they were generated. in these tests, the input patterns to the
network were derived from the projections of the image on the top k cigenvectors of a single mask set (either
target or non-target).

A simple two layer, feed-forward network is used to classify the projections of the image blocks onto the

cigenvectors sets. Its hidden layer employs anoun-lincarsigmeoid function and the network is trained with back
propagation. 19 A portion of the training set (a hold out set) is reserved to stop network learnina in order to

enhance generalization.® The simple design of the feed forward network allows for officient 1mplementation of the
algorithm on the post-processing machine. The network is required to map the mask outputs for the Image pocks
onto the associated 5 dimensional output vector. Fornon-target patterns, no error s back propagated in any of the
direction fields- a simple don’t care state is incorporated into the network to facilitate this aspect of the mapping.
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Figure 6: The graph on the left presents the fraction of test cases successfully identified vs. the number of nodes
in the hidden layer. The two curves represent individual classifier results with either the eigenvectors generated
by the targets or the non-targets. The dimensionality of the input pattern was 30. The graph on the right shows
the same fraction vs. the size or number of projections on the two eigenvector sets. Tile size of the hidden layer
was fixed at 30nodes.

5 Results

Initial tests on the rocket imagery were used to determine the architecture of the classifier and the number of
projections on the eigenvector sets needed to obtain good generalization. In these experiments, full floating point
precision was used in both the eigenvectors and the actual patterns presented to the neural network.We felt
this was sufficient to provide a reasonable starting point for the architecture and subsequent experiments tended
to bear this out. To determine if the neural network classifier could perform this detection and direction test,
we initially used full floating point precision and varied the number of nodes in the hidden layer to select an
architecture suitable for the problem. Thiswas done with both sets of eigenvectors. In addition, we examined the
performance of the classifier using different numbers of projections, which changes the size of the input pattern
presented for classification. For the varying pattern size,the number of hidden nodeswas fixed at 30. The size of
the pattern was fixed a 35 when the number of hidden nodes was allowed to vary.

Figures 6 present the results of these tests. The graphsshow the detection rate achievedby the classifiers
which is simply the number of correct observatious (target or non-target) divided by the total number of test
cases. For the eigenvectors derived from tile actual target data of the training set, detection rates approaching
100% are achieved while the non-target eigenvectorsproduce results at around 92%. Plume direction (not shown)
was correctly identified in about 90% of the target cases. Thisis amoredifficult task for the network in that most
of the imagery is without clutter and the target is quite bright with respect to the background so that detection is
quite straight forward. Determining the plume direction of the 32x32nnages of Figure 2 is quite difficult however,
even for the human eye. Surprisingly, the identification rates are quite high for the classifiers with both cigenvector
sets.

The second set of experiments looks at the how noiseiuthe system, as reflected by reduced precisioninthe
analog processing COImMpo cuts, immpacts the detection and direction identification rates. Figure 7 examines the
impact of reduced precisionin both the output of the neural processor (the inner product of the eigenvectors and
the immage; io in the chart) and in the actual values of theeigenvectorsthemselves (the teimplate values stored in
the 3D ANN). In these set of tests, precision wasonly examined for the target set of cigenvectors. The tests were
conducted at full, 8 bit, 6 bit, and 4 bit precision.



Eigenvectors | Precision: Weights & 1o | Total Id Rate | Dir Id Rate
Non-target float & float 93 92
Target float & float 100 19 ]
| Target float & 8bit 100 9
Target 8bit & 8bit 100 93
Target 6bit & 6bit 100 89
Target 4bit & 4bit 99 57

Figure 7: Classification rates for both non-target and target eigenvector sets using 30 projections (input dimen-
sions)and 30 hidden nodes. The precision term indicates thenumber of bits used to represent both the eigenvectors
and the projection values.

I'igure 8: The left panel presents the original image. Fach 32x32 block is first projected onthe top 30 target
eigenvectors (8 bit) and the resultant values (8 bit) are presented to the mural network for classification. The
right panel shows the output of the network (inreverse video). Values below 0 arc mapped to () (white in the
panel).



As Figure 7 snows, reduced precision had little effect on detection in the rocket imagery. Very high detection
rates occurred at all levels of precision. Figure 8 showsthe response of the classifier to each of the blocks
of a novel image from the sequence (right panel) a 8 bit precision in both the eigenvectors and the pattern
representation. Significant degradation in direction performance appears after 6 bits. Only the 4 bit representation
of the eigenvectors and the 3D ANN output significantly impacts the classifiers ability with respect to direction

Both direction and detection have high classification rates with only a few dimensions which is beneficial in two
ways. First, it frees up additional template resources in the 3P ANN for alternative mask for other classification
tasks. Second, it reduces the complexity of the classifier and either frees resources in the POP or decreases the
time needed to process the input pattern. Provided that other target sets can be represented by such a compact
pattern, this alows YIGILANTE to conduct multi-way searches. n addition, if the detection rate achieved by the
non-target eigenvectors is acceptable, multiple classifiers can be run on the same projection values which would
also increase the flexibility of the VIGILANTE system and its ability to cope with novel situations.

6 Conclusion

We have described an algorithm that is easily implemented in the VIGILANTE architecture that provides very
good detection rates on rocket imagery supplied by BM 1)O.Provided precision can be maintained, thealgorithm
also generates orientation information at rates over 90%. Obviously theimagery at thiscarly stage of the project
is quite simple. To provide detection, orientation, recognition N formation over a wider range of targets, views,
and backgrounds will decrease these classification rates. 1o overcome the problems introduced by the additional
variables, we are currently examining a hierarchica control and classification structure using a similar methodology
that proceeds through the various image understanding goalsin stages.
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