INSTRUMENTATION FOR LAND SURFACE TEMPERATURE MEASUREMENTS

Anne B. Kahle
Jet Propulsion Laboratory
4800 Oak Grove Drive, MS 183-501, Pasadena, CA, 91109, USA
(818) 354-4265 (voice), (818) 354-0966 (FAX)
anne@aster.jpl.nasa.gov (email)

Over the last several years, spaceborne instruments have been flown which image the Earth’s surface in a few thermal infrared bands at a spectral resolution of about a kilometer or more. These include such instruments as AVHRR and ATSR. While these instruments have proved extremely useful for measurement of sea surface temperature, their utility over land is somewhat reduced because of the high spatial variability of land surfaces and the nonuniform spectral emissivity of the land surface materials. These factors combine to make an accurate determination of land temperatures difficult. However, in the next few years, we can anticipate new spaceborne instruments which will have several to many bands in this spectral region with much higher spatial resolution. These new instruments will allow much more accurate determination of surface spectral emissivity and surface temperature. One of the first of this new generation of thermal infrared imaging instruments will be ASTER. It is being built by MITI in Japan and is scheduled to fly on the NASA EOS/AM1 platform in 1998. Other proposed instruments include the MTI, PRISM, IRSUTE and Sacagawea.

In addition to the spaceborne instruments, a number of new airborne instruments such as MIVIS, MAS, and MASTER are also becoming available, many as precursors to spaceborne instruments. These, combined with new field spectrometers such as those developed by Designs and Prototypes, and by Mydac now provide the remote sensing scientist with a broad suite of instruments for developing the use of this spectral region.

The next decade should prove to be an exciting one for thermal infrared remote sensing. We anticipate that the availability of data from the sensors discussed here will develop an ever-increasing demand for high spatial resolution multispectral, thermal infrared data.

Invited session: Surface Temperatures: Observations and Applications
Corresponding author: Anne B. Kahle
Preferred presentation: Oral