EGS Abstract for
Vienna, April, 1997

MULTI-INSTRUMENT STUDIES OF TITAN’S SURFACE FROM CASSINI
R. D. Lorenz¹, C. C. Porco¹, S. D. Wall², R. L. Kirk³, J. I. Lunine¹, L. A.
Soderblom³ and R. H. Brown¹(¹LPL, U. Arizona; ²JPL; ³USGS, Flagstaff)
The Cassini orbiter carries high-resolution remote sensing instruments with
which to characterize the surface of Titan. These are the RADAR, the Imaging
Science System (ISS) and the Visual& infrared Mapping Spectrometer (VIMS).
While the radar will cover only about 25% of Titan’s surface, at a resolution ~3x poorer than Magellan, the radar data will be combined with roughly
Viking-quality optical mapping, and near-IR spectra. The synergy of active and passive microwave measurements with multispectral and high-resolution
imaging is unique to Cassini and will be vital to understand Titan.
For example, the diffuse illumination on Titan (due to scattering by haze)
makes photoclinometry and shadow-length topography from visible images difficult. Radar data may be much more effective here. On the other hand, the
surface composition may be better determined by IR measurements, and contacts between surface units may need the highest spatial resolution (from ISS)
to establish stratigraphy.
We will examine the contributions from the different instruments and their
combination, and outline the likely distribution and resolution of Titan sur-
face coverage. Without a scan platform, the optical instruments and the radar
cannot be pointed at Titan simultaneously, so orbiter time must be shared
between them during the - 40 Titan flybys to be made by Cassini. We will
explore strategies for maximizing the science return given this limitation.

Submittal Information
1. Ralph D. Lorenz
 Lunar and Planetary Lab
 University of Arizona
 Tucson
 Arizona 85721-0092 USA
 Tel: [+1] 5206215585
 Fax: [+1] 5206214933
 E-mail: rlorenz@lpl.arizona.edu

2. PS 4. Titan’s Atmosphere and Surface:
 recent developments
3. Dr. Athena Coustenis
4. none
5 Oral presentation strongly preferred

This is the abstract, which is all we have so far