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1. Introduction

Studying the kinematics of the Earth's crust is a complicated problem for which geodetic
measurements provide important constraints. Though dominated today by GPS data, these
studies can take advantage of terrestrial measurements, particularly high precision electronic
distance measurements (EDM) concentrated across active faults, and global satellite laser
ranging (SLR) and very long baseline interferometry (VLBI) observations spanning over a
decade. The availability of global GPS observations and the need to use the orbital
information from these in the analysis of regional networks further motivates efforts to
develop efficient methods of combining data. In this paper, we discuss an approach to
estimating a crustal deformation field that addresses both the efficient use of global GPS data

in the analysis of regional networks and the combination of GPS and terrestrial survey data.

We perform our analysis in three steps. First, we obtain loosely constrained estimates of
geodetic parameters from space-geodetic or terrestrial observations from individual
experiments. Second, we combine the individual loosely constrained estimates into a single
solution, estimating station velocities and allowing stochastic variation of station coordinates
and orbital and Earth rotation parameters when appropriate. Third, we impose general
constraints in position and velocity to define a uniform reference frame. This methodology
allows us to 1) perform simultaneous reduction with various types of geodetic data, 2)
combine rigorously global and regional observations, 3) process efficiently and flexibly large
volumes of data, and 4) estimate time-dependent displacements from earthquakes or changes
in instrumentation. Several important byproducts, such as the strain rates and rotation rates
over the whole network or subnetworks, are also obtained from the final velocity solutions
[Feigl et al., 1993].

Aggregation of data using saved normal equations or estimates with variance-covariance
matrices has a long history in the analysis of both terrestrial and space-based geodetic data.
More recently, it has become a key element in the program of coordinated GPS analysis
conducted under the auspices of the International GPS Service for Geodynamics (IGS)
[Beutler et al., 1994; Blewitt et al., 1993]. In this paper we focus on problems that arise when
terréstrial and space-based data are combined, and on the computation of appropriate
statistics in the presence of finite constraints and state perturbations. We also document in
detail the algorithms incorporated in the GLOBK [Herring, 1995] and FONDA [Dong, 1993]
softwares which have been widely used for studies involving global geodynamics [Herring et
al., 1991], regional strain rate [Feigl et al., 1993; Oral et al., 1995; Bawden et al., 1996], and



co-seismic deformation [Bock et al., 1993; Hudnut et al. 1994; Bennett et al., 1995; Hudnut
et al. 1996]. Finally, we present an example of combining trilateration and GPS

measurements in southern California.

2. Analyzing the primary observations

A rigorous combination of various geodetic data does not necessarily require that the
original, or primary observations be analyzed simultaneously. It is necessary only that the
variance-covariance matrices carried forward from the separate analyses include all the
parameters that are common to more than one subset of the data. In combining GPS, SLR,

and VLBI observations, for example, parameters of the Earth's rotation should be included; in
combining space-geodetic and terrestrial data, it is usually necessary to retain only station
coordinates and velocities. In our three-step approach, the estimated parameters from the
analysis of the primary observations become quasi-observations for the second step. The
combination of different observation types or data from multiple epochs is implemented

through the quasi-observations.

Our mathematical framework is four-dimensional integrated geodesy, which embodies the
intrinsic correlation between the Earth's shape and its gravitational potential. The
formalization can be found in the work of Hein [1986] and Collier et al. [1988]. To avoid
unnecessary complexity, we simplify the formulas by omitting parameters which are not used
for studying horizontal crustal deformation. On the other hand, we express the time
dependence of station position vector with a linear model, considering episodic station

displacements and allowing a stochastic representation of post-seismic relaxation.

By omitting the time-dependent disturbing potential, the geodetic measurement /(¢) can
be expressed as
I(t) = F{X(a,t),U(X(a,)),h(1)} (1

where
X(a,t) is the position vector, whose time-dependency is described by the parameters a;

UX(a,t)) is the reference gravitational potential, with the time-dependent disturbing
potential excluded;

h(t) are auxiliary parameters, representing propagation effects, satellite positions, etc.; and

F  denotes a non-linear functional which operates upon X, U, and h to produce the scalar

value of [ (t).



For a wide variety of observations (e.g., trilateration, chord distances, and space-based
measurements) there is little or no dependence on local U; for others (e.g., triangulation and

leveling), there is a strong dependence.

The linearized observation equation is
8l = A AX(a,t) + B AU(Xp) + CAhg + ¢ (2)
where
31 represents the residual of observed minus calculated, based on the a priori model;
AX(a,t) is the adjustment of time-dependent position vector;
AU(Xp) is the correction to the reference potential at a priori position Xg;
Ahy is the correction of the a priori auxiliary parameter hy; and

€ represents the errors in the observations.
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In the analysis of the primary observations, the variations of estimated AX(a,t) carry the
crustal deformation information, which will be explicitly parameterized and estimated in the
next step. In general, the potential parameters can be estimated simultaneously with other
parameters [Milbgrt and Dewhurst, 1992]. In determining horizontal motion, however, it is
sufficient to use the potential terms in (2) to perform corrections to those observations which
are sensitive to the gravitational field. Appendix A lists the linearized observation equations

for various geodetic measurements.

The reference frame in which the primary observations are analyzed depends on the
nature of the measurement technique. Space-based measurements usually require an inertial
("celestial") frame, with origin at the geocenter for observations of near-Earth satellites (SLR,
GPS) or the solar-system barycenter for observations of the Moon or extragalactic radio
sources (VLBI). The coordinates of the stations are transformed by applying matrix rotations
accounting for precession, nutation, polar motion, and the Earth's diurnal rotation, and by
applying, if necessary, vector translations of the origin (see /ERS [1992]). Terrestrial surveys
measure distance, angle, orientation and height between stations, using the geoid to define the
local horizontal and vertical directions. Geodetic or local topocentric coordinates used in
these measurements may be transformed to geocentric coordinates using standard equations
(see, e.g., Vanicek and Krakiwski [1986]). For simplicity, and greatest convenience in the
analysis of space-geodetic observations, we express all coordinates using Cartesian

components in a geocentric, Earth-fixed frame.



In analyzing the primary observations, we apply loose constraints to all of the parameters
to be carried forward as quasi-observations. By not tightly constraining any of the
parameters, we allow the reference frame to be defined consistently after combination
[Herring et al., 1991; Hefflin et al., 1992]. On the other hand, some constraint is necessary to
prevent the normal matrix from becoming singular. The constraint should be weak enough
so as not to affect the parameter estimates, but not so weak as to cause significant rounding
error in the computations. If the parameter estimates are uncorrelated, the change in the
adjustment due to the constraint being applied is proportional to the ratio of the a posteriori
variance, in the absence of a constraint, to the a priori variance of the parameter estimates [see
Herring et al., 1990]. That is, if the a priori variance is 1000 times greater than the a
posteriori variance of the parameter, the effect on the estimates should be about one
thousandth of the size of the adjustment. In practice, correlations between parameters lead to
greater sensitivity to the a priori constraints. In the limit of high correlations among all the
parameters, the effect of the constraint is n times larger than the uncorrelated case, where n is
the number of parameters in the analysis. Analyses of GPS data shows that for solutions in
which some of the stations are tightly constrained, the effects of constraints on the other
stations are very similar to predictions from the uncorrelated case given in Herring et al. We
show results for a loosely constrained analysis in Figure 1. In this case, the simple
uncorrelated rule underestimates the effects by up to a factor of two but this factor is still far

less than the several hundred potentially highly correlated parameters in this analysis.

A practical advantage of our approach is the saving in computation time and data
storage. The loosely constrained solutions contain all the geodetic information in the
primary data, but in a much compressed form. For example, data from a single GPS
observation session may consist of phase measurements from 20 stations accumulated at 30-
second intervals over 24 hours. For this case the files required to store the residuals and the
partial derivatives with respect to station coordinates and satellite parameters typically occupy
about 20 Mb of storage. In the quasi-observation approach, we need to keep only the
estimated station coordinates, satellite orbits, earth rotation parameters, and their covariance
matrix, which are easily stored in about 2 Mb. Computation time for the combination is
typically reduced by about two orders of magnitude. Quasi-observations are not sufficient,

however, if a need arises to change the model used to analyze the primary observations.

3. Combining data using Quasi-observations



In the second step of our analysis, we treat the estimated AX(a,t) from individual subsets

of data as quasi-observations to estimate station positions as a function of time;

AX(a,t) = ( 1+X)AX0+(t-to)AVo+; 1 (6,t) SE kYD) +Tx+(t-t) Ty+HUL W +L(t-t0) 0 (4)

where the parameter vector a is embodied by V, €, v, Ty, Ty, @, ®, A defined below,
AXo, AV are the adjustments to the a priori coordinates and velocities referred to an

reference epoch to;
8Ek is the episodic station displacement from the k-th event, at time tk, with

-1 ift<tg<tp
(t,tx) = 0 if >ty tk<tg or t<ty,tx>to (5)
1 ift>t >t

Y(t) is a stochastic displacement due, for example, to post-seismic motion or a short-
term monument instability.

A is the scale correction factor,

T, and Ty are the translation and its rate of the network;

®y, ®, represents a rotation and rotation rate of the network or, equivalently for

global observations, the Earth rotation and rotation rate parameters, with

0 -—zo Yo
u=f zo 0 —Xxo (6)
-yo X O

in which xg, yg. Zo are the a priori coordinates;
Thus the three elements of a dynamic reference system position relative to a specified epoch,

velocity, and episodic displacement are estimated simultaneously.

Both classical least squares and stochastic estimators provide a natural framework for
combining data from multiple epochs and different types of observations. In least squares
these are represented by the normal equations; in sequential estimators by parameter estimates
and their covariance matrices. In order to treat the most general case, we present our
approach in terms of the equations for a Kalman filter, of which sequential least squares is a
special case. Alternative formulations in terms of batch least squares, a U-D factorization
covariance filter, or square-root information filter (SRIF) commonly used in spacecraft

navigation can also be derived [Bierman, 1977; Blewitt et al, 1993].

Let 81y =1y - 1oi be the vector of linearized quasi-observations at time ty, where lgg
represents the a priori values and I the estimates of the quasi-observations from the analysis of

the original observations. The observation equation is
Ol = Ay Oxy + & N



in which x, are the parameters to be estimated (e.g., from the right-hand side of Eq. (4)), A is
the design matrix of partial derivatives, and € is a zero-mean, white-noise process with
covariance Px. The parameter state is represented by

Oxk+1 =Sk OXk + g (8)
where Sy is the state-transition matrix representing the dynamic evolution of the parameters
and qy is a Markov stochastic process with covariance Q. In our case Sy is usually just the
relationship between position at t, and position and velocity at ty. To estimate the parameters

at time ty,;, one first propagates the estimates and their covariance,

8Xk+11k = Sk 8% (10a)

Cis1ik = Sk Ck Sy + Qx (10b)
and then updates the estimates using the current observations,

8Xice1 = OXicr11k + Kicat (Bt - Akr1 Xica11) (11a)

Cis1 = Ciaik - Kia1 Axe1 Cratik (11b)
where Kie1 = Cisik Apri Prat + Aget Craiik ALl)-l (12)

is the "Kalman gain”" matrix. In these equations, k+1lk denotes the prediction at ty, using data
through ty and the superscript T denotes the transpose of a vector or matrix. Since the new
covariance matrix is obtained by decrementing the old one, numerical instabilities can arise if
the a priori uncertainties are too large or the propagated covariance becomes too large due to
the use of large values of the Markov parameters. This latter situation sometimes occurs, for
example, when station coordinates are considered as stochastic parameters (e.g., to test
repeatability) and two observations are separated by long periods of time. The rule of thumb

discussed in the previous section can be used to determine the appropriate level of constraint.

The scalar "weighted sum of squared residuals" (x2) is widely used in least squares
analysis as an indicator to rescale the a posteriori uncertainty, detect observation blunders, test
the compatibility of different data sets, and to assess the significance of different
parameterizations [Segall and Maithews, 1988). To apply this scalar in the general case of
Kalman filtering, we define the increment of 8)? as
k1= Xﬁ+]'Xﬁ=(alk+l'Ak+]8§k+l)TPi(lJ,](61k+l‘Ak+18§k+l)+A§g+lcicl+1|kA§k+l (13)
where  AXyyi = X1 - OXke1ik = OXk+1 - Sk OXk (14)
The first term of (13) represents the increment in x2 from adding new data, and the second
term represents the increment as the solution is propagated forward to a mew epoch. In
Appendix B, we show that in the case of time-invariant parameters (8§k+1|k = 55(\1(,
Ci+11k = Cr), (13) is equivalent to the classical definition of 8)2. The definition (13) can also

be expressed in the form (see Appendix B)



8X§+1=(5lk+l'Ak+l8§k+llk)T(Pk+l+Ak+1Ck+llkAEH)-l(8|k+l'Ak+18§k+llk) (15)
Since (15) uses only the propagated estimates 0Xk+ |k, it allows estimation of the increment of
X? before Kalman filtering, which is quite useful for identifying and eliminating outliers in
combining a large number of quasi-observations and also in navigation and real-time
deformation analysis, where the solution is derived from processing the primary observations.
Our software uses (15) to compute the increments in 2 during filtering (although the degrees
of freedom are not computed completely during the filtering stage). Note that (15) can lose

its sensitivity if the initial propagated covariance, Ck+1Ik, is too large.

4. Imposing general constraints

The constraints impose additional information on the estimated parameters. Their
function is threefold: i) to remove the rank deficiency, which exists inherently in both
terrestrial and space-geodetic data; ii) to define a uniform reference frame through the well-
determined stations common to all experiments; and iii) to take advantage of a priori
knowledge to strengthen the combination solution. In deformation analysis, the most
commonly used constraints equate the adjustments of parameters. Inequality constraints can
also be used by transforming them into the unconstrained problem via a penalty function
[Zhao and Sjoberg, 1995].

After combining the loosely constrained quasi-observations, the reference frame of the
combination solution is only weakly established. This frame has (effectively) a twelfth-order
rank deficiency: three translations, three rotations, and their rates. How we remedy the rank
deficiency and define the reference frame depends on what kind of data we have and how
much a priori knowledge we can utilize. All geodetic observations have a rotational
uncertainty and some, such as VLBI and EDM, have a translational deficiency. For GPS there
is theoretically no translational rank deficiency since the orbital dynamics are sensitive to the
position and velocity of the Earth's center of mass, but a weak global tracking network and/or
poor modeling of the orbital dynamics often encourage us to constrain the translation and its
rate to stabilize the solution. None of the observations is degenerate in scale, but all have
errors that may encourage us to constrain the scale. For VLBI, scale errors can arise from
deficiencies in modeling atmospheric delays [MacMillan and Ma, 1996]; while for GPS, from
antenna phase center models, atmospheric delay models and deficiencies in modeling satellite
orbital dynamics; and for EDM, from calibration of meteorological probes and the frequency

standards used in the measurement equipment. In Appendix E we discuss our approach to



defining rotation, translation, and scale for geodetic networks. We also show that for systems
such as GPS, which are strictly not free to translate or re-scale, it may still be necessary to
estimate translation and scale parameters explicitly in order to minimize the effects of

modeling errors on the estimated station coordinates.

Trilateration and triangulation data cannot resolve the translation and rotation and their
rates of the entire network. Triangulation data are also insensitive to the scale of the network.
Traditionally, there are two approaches to deal with the rank deficiency when only terrestrial
data are available. One approach is to estimate regional strain rates instead of velocities under
the assumption that the strain variation is uniform in time and the velocity gradient is constant
over the network. Such a parameterization gives uniquely determined parameter estimates
[Bibby, 1982; Drew and Snay, 1987]. For noisy data, this parameterization provides spatially
averaged results to enhance the signal-to-noise ratio. This approach is most suitable for a
small area, where the assumption of a spatially uniform velocity gradient is valid. A large or
tectonically complicated area must be divided into smaller districts, based on a priori
knowledge, to implement this approach. The velocity field is obtained by integrating the
velocity gradient from a station with a known or assumed velocity. The derived velocities are
highly correlated. An alternative approach is to use external constraints to eliminate the rank
deficiency. This approach removes the assumption of a spatially uniform velocity gradient.
The "inner coordinate solution” [Brunner, 1979] represents the minimum-norm generalized
inverse of a singular normal matrix, and assumes the prior model to be zero. The "outer
coordinate solution" [Prescott, 1981] constrains network rotation such that the velocities
along a specified direction are minimized. The "model coordinate solution" [Segall and
Mathews, 1988] applies the velocity field derived from a geophysical model to constrain the
solution. Both "outer coordinate” and "model coordinate” solutions usually match well the
known local tectonic features. They are especially useful when we want to calibrate or
quantify the model parameters. Nevertheless, in a tectonically complicated region it is
difficult to specify a single dominant direction to apply outer coordinate constraints or to
construct a model velocity field in advance. As a result, these methods are also applied best to
small areas. Combining terrestrial survey data with space geodetic data makes it possible to
derive an unambiguous estimate of station velocities over a large area [Snay and Drew, 1989;
Grant 1990; Dong 1993]. If derived using data from a global network, the space-geodetic
solution can be considered unambiguous on a regional scale, allowing the space-geodetic and
terrestrial estimates of horizontal velocities at collocated stations to be linked to remove the

rank deficiency in terrestrial measurements. If the offsets between the instrumental reference



points used by different techniques are known, we can link the coordinate estimates at these

collocated stations, thus providing additional information (see, e.g., Feigl et al. [1993]).

We apply constraints in our analysis by treating them as quasi-observations [e.g. Jackson,
1979], which are formally expressed as
l.=A.0x + €. with covariance C, (16)
Suppose that the parameter adjustments from the combined, loosely constrained solutions are
8X with covariance Cy and misfit X%, then the solution, covariance and misfit after the

constraints become

8% =% + Cx AT (Co+ A CAD ! (I - A 8%) a7
Cxczcx‘CXA::r (Cc+ A CxAg‘)-l A Cy (18)
12 =13+ U-ASR) (CHACAY! (-ABR) 9

Setting C. = 0 in (16) is the classical "hard" constraint (also called an "absolute” constraint
by Vanicek and Krakiwsky [1986]), which is equivalent to fixing some linear combinations of
the parameters to specified values or making some parameters have exactly the same
adjustment. When C. > 0 in (16), this case represents a "soft” or "weighted" constraint
[Vanicek and Krakiwsky, 1986], which allows the parameter adjustments to differ by an
amount controlled by C.. Thus, C. functionally characterizes the perfectness ("hardness") of
a priori knowledge about the constraint. The soft constraint is useful when our knowledge
about the constraints is not perfect; that is, if the constraints are based on other observational
estimates rather than on rigorous theoretical formula. It also has considerable utility in
deformation analysis, for example in accounting for differences between two measurements

due to viscoelastic relaxation or afterslip following an earthquake.

With the three-step approach, we can manipulate various constraints without reprocessing
the original observation data. The reasonableness of the constraints can be assessed from the
increments of %2 (Eq. (19)). A variety of constraints useful in the deformation analysis can

be found in Dong [1993]; some of these will be discussed in our example.

5. Statistical tests of the combined solution

In the combination, the covariance matrices of the different data sets should reflect both
the internal uncertainties and the uncertainties of biases between them. Determining the

appropriate relative weight between different data sets requires external knowledge or

10



extensive comparisons, which are beyond the scope of this paper. We can, however, discuss

the tools used to assess the statistical compatibility of the individual quasi-observations.

Davis et al. [1985] have shown that for the same parameters with the addition of new data
uncorrelated with previous data, the covariance matrix of differences of the parameter
estimates has the relation

3= -G (20)
where X and X denote the estimated parameters with and without new data added, respectively.
Equation (20) is often used to check the compatibility of new data with the original data
(estimating the same parameters) or to test the sensitivity of parameter estimates to subsets of
data. The difference between (C.18) of Appendix C and (20) indicates that adding additional
parameters enlarges the covariance of common parameters for the same data, whereas (20)

shows that for the same parameters, adding new data reduces the estimated covariance.

Formula (20) can be extended to a general case not only when new data are added, but
also when additional parameters are estimated, provided that the new data are uncorrelated
with the previous data and the new parameters depend only on the new data (see proof in
Appendix D). We further extend the formula to a more general case by allowing time-variant

parameters and state perturbation. The corresponding formula is

Corotion = Crrti - Cat 21)

A straightforward extension of (21) is

CL(;(\kH'S;ZHHk) = Cu;kmk) - CL(;ZkH) (22)

where L(x) in (22) represents any linear transformation of x. In the example of this paper,
(22) is used to set the criterion that if the solution difference LXy+1- OXk+11k) exceeds the
95% confidence level, an incompatibility between different data sets is detected. Formula
(21) can be further extended to the smoothed Kalman filtering solution [see Herring et al.,
1990] from the forward and backward running Kalman filter (see Appendix D). Formulas
(20) to (22) are applied to the covariance and adjustments as a whole and the compatibility
test should be performed strictly in a multi-dimensional Hilbert space. In practice, however, it
is less useful to have a rigorous measure of compatibility than to identify the stations causing
the problem. Hence, we usually perform the tests on the coordinate and velocity adjustments
for each station separately, neglecting the correlations between parameters of different

stations and between coordinates and velocities [see Appendix of Feigl et al., 1993].

11



Incompatibilities can arise from incomplete editing of the data, unmodeled systematic
errors, reference frame constraints implemented differently in different data sets,
underestimated noise covariances, and overly tight constraints. A shortcoming of (22) is that
many incompatibilities are caused by the inconsistencies in the data, but this test is performed
in parameter space. There is unfortunately no one-to-one correspondence between data
space and parameter space. The error in one data component or in one constraint can smear
the entire solution and thus make innocent parameters appear incompatible. Identifying the
inconsistent data must be accomplished by returning to the analysis of the primary
observations after narrowing the candidate surveys using the 8)? as the quasi-observations are
added to the combination. After removing blunders, an abnormally large 8)2 usually
indicates unmodeled systematic error, or that we have underestimated the effective data noise,
perhaps by ignoring temporal correlations. Rescaling the covariance matrix on the basis of
the effective uncorrelated sampling rate provides a reasonable, if not rigorous, means of
obtaining realistic uncertainties. [see, e.g. Feigl et al., 1993; more rigorous approaches for
continuous GPS data are discussed in King et al., 1995 and Zhang et al., 1996b]. External
checking based on prior geophysical information is also helpful in detecting the potential

errors in network rotation and translation [see p. 38 of Dong, 1993].

The misfit X% (defined in (3.7)) obeys the x2-distribution with n-m degrees of freedom,
where n is the observation number, and m is the estimated parameter number (n > m). If the
true variance is known, the character of X% is applied to perform statistical tests of the
mathematical model. In most deformation analyses, researchers tend to accept a
mathematical model that makes physical sense, and to consider the true variance as unknown.
Then the a posteriori uncertainty is rescaled by the normalized root-mean-square (nrms):

X
n-m

nrms = (23)
When imposing k general constraints (defined in (16)), the misfit X? with constraints can
be calculated by (19). In the case of "hard" constraint (C. --> 0), the increment of X2
becomes
ax’=x2- 13 =l - ASR] (ACAT (I - ASR) (24)
which also obeys the y2-distribution with k degrees of freedom and is statistically independent
of X% [Caspary, 1987]. Such a character is conventionally applied to test the reasonableness
of the constraint by either a x2- test (when the true variance is known) or an F- test (when the

true variance is unknown).

12



The introduction of soft constraints complicates the statistical character of X?:, as can be
seen from the following two extremes. When the constraints are very "soft" (C¢ --> oo in
(16)), the solutions are virtually undisturbed (note (17), (18), (19) with Cc= - ). Hence X%
still obeys the % 2- distribution with n-m degrees of freedom. When the constraints are very
"hard" (C. --> 0), Xg also obeys %2- distribution but with n-m+k degrees of freedom. Here we
implicitly assume the rank of A, is k to eliminate the case of completely correlated absolute
constraints. In order to perform this test formally for general weighted constraints (0 < C <
o), we consider that x? obeys approximately a x2- distribution but with n-m+e degrees of
freedom (0 < e < k), where (n-m+e) is in general no longer an integer. Here e represents the
reduced estimated parameter dimension due to the constraints on parameters. It must satisfy
the following three conditions:

(i) When C; --> oo, € --> 0.
(ii) When C. --> 0, e --> k. Here k is the rank of Ac.

(iii) In general, 0 < e <k.

When the estimated parameters are uniquely determined, which is the case in deformation
analysis (rank deficiency is always remedied by constraints), the resolution matrix [Jackson,
1979] is the identity matrix with dimension of m. It consists of two parts:

I=Rgq+R.=NIATC'A + N1ATCIA, (25)
where N = ATC}]A + AIC!A, (26)
and Ry, R, represent the contributions to the resolution matrix from data and constraints
respectively. We define e as the trace of the sub-resolution matrix Rg:

e = trace (Rp) = 2 (Reki (27)

1

It can be found that e satisfies the conditions (i) (see (25)) and (ii) (see (18)). For a
special case of A¢ = (0, Ix), Jackson and Matsu'ura [1985] proved that 0 < (Rc)jj < 1 for each
of the k constrained parameters, which denotes the share of contribution to the parameter
from the constraint. For a general A, the individual (R.);; could exceed the range between
zero and one, but the sum of (R.);; is still between O and k [Shen, 1991]. Thus the defined e
also satisfies the condition (iii). Note that no matter how many constraints have been
imposed, e never exceeds the parameter dimension m since the rank(A) < m, that makes sense

because all our constraints are imposed in the parameter space.

The state perturbation noise qi performs a role opposite that of the constraints. If its
covariance Qjy --> oo, all the corresponding parameters are effectively reset at epoch k,

implying the degrees of freedom are reduced by the number of reset parameters. If its

13



covariance Qy --> (0, no parameter is perturbed, implying no change in the degrees of
freedom. If the real number px represents the degrees of freedom reduced by the state
perturbation noise at epoch k, it must satisfy the following three conditions:

(1) When Qg --> oo, px --> 0.

(ii)) When Qg --> 0, px --> j, where j is the rank of Q.

(iii) In general, O < pg <j.
Cil 11k Qx satisfies the above conditions (see (10b)). However, Cil 11k Qx requires the inverse
of the full covariance matrix at every time propagating step, which is time consuming and
conflicts with our goal of efficiency. Note that in deformation analysis, Qk is usually a
diagonal or block diagonal matrix. If C:”,k and Q; represent the matrices Cy.1x and Qy
with all off-diagonal terms set to zero, Cy; 1k Q; also satisfies the above conditions but with

greater computational efficiency. In this paper, py is defined as the trace of Cii ik Q. Thus

the number of degrees of freedom is defined by

n-m+e—§,pk (28)

The degrees of freedom are further complicated by the quasi-observations. Unlike the
analysis of primary data, the number of observations (n in (28)) does not necessarily equal to
the number of quasi-observations. For example, we can estimate n station coordinates as n
quasi—observationvs from a GPS campaign data spanning a few days. For the same GPS
campaign data, we may also estimate n station coordinates and n station velocities to formally
obtain 2n quasi-observations. However, the n station velocities are actually "virtual” quasi-
observations with little resolution from the data, and hence should be excluded from the
number of observations. The appropriate number of observations should be the data-
contributed resolution part of the quasi-observations (Rq in (25)) and therefore is a real-value
in general. In practice, the number of loosely constrained GPS campaign quasi-observations
(station coordinates only) can be treated as the number of observation assuming that the very
weak stations have been excluded. For the loosely constrained EDM quasi-observations,
however, the data contributed resolution matrix should be used to compute the appropriate
number of observations because the rank deficiency and weak resolution for some parameters
of the trilateration data (network translation, rotation and their rates, single baseline
observations for some stations, limited resolution for the vertical coordinates and their rates)
makes the data-contributed resolution always significantly smaller than the number of quasi-

observations.

Definition (28) is based on the approximation that the classical x2- distribution can be

extended to a continuous function of the degrees of freedom. A more rigorous treatment
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should include a theoretical discussion of the statistical distribution of Xg, and deduce its
corresponding degrees of freedom from the distribution function. To our knowledge, this
has not yet been done. We note that the three conditions for increasing the degrees of
freedom by constraints and the three conditions for reducing the degrees of freedom by
perturbations are necessary but not sufficient. Thus, we have provided a practical approach to
performing statistical tests in the case of general constraints and state perturbation but have

not resolved the problem completely.

6. Sub-optimal combination solutions

The rigorous combination of quasi-observations we have described will produce a
solution identical to that obtained if all the original data are used simultaneously. The large
increase in space geodetic data in recent years, particularly from continuously operating GPS
stations, has led to many cases for which it is desirable to sacrifice a small degree of rigor in

exchange for greater efficiency.

One example of a sub-optimal approach is the combination of data from a global GPS
network with those from one or more regional networks. When double differences are used
as observations, the networks can be connected with no redundancy by including a single
common station between them, but the analysis will usually be sub-optimal because of the
difficulty of dynamically choosing a common station that maximizes the number of
independent baselines. In practice, it is usually desirable to introduce two or three common
stations, accepting the factor of two increased weight given to baselines between these stations
in exchange for the greater reliability achieved by not depending on flawless performance of
a single common station. When one-way observations are used, sub-networking can be
accomplished rigorously by including satellite clock parameters in each analysis, or sub-

optimally by determining these parameters using a subset of the data.

In combining global and regional data, orbital parameters should be included in each
analysis if the regional data can contribute significantly to the determination of orbits. Prior
to 1994, global tracking stations were relatively sparse, allowing regional networks of a few
hundred kilometers to make significant improvement in the estimates of the satellite's motion
over the region [e.g., Oral, 1994]. With the current network of more than 50 globally
distributed stations contributing to orbit determination by the IGS, regional networks of small

aperture add little additional information to satellite parameters. Hence the regional stations
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may be analyzed separately from the global tracking stations, with orbits fixed and
correlations between the two solutions safely ignored [Zhang et al., 1996a]. An extreme case
using double differences is to analyze the observations one baseline at a time, making
coordinate estimation in the phase analysis extremely fast but increasing the computation
time of the combination. With one-way observations, estimation of station coordinates and
clocks one station at a time may be accomplished by determining the satellite orbits and
clocks from a global analysis [Zumberge et al., 1996]. In either of these extreme cases,
ignoring the correlations among the estimated coordinates may overestimate the uncertainties

in the relative positions of the regional stations.

7. Combination of terrestrial and space-geodetic data in southern California

For southern California a rich and diverse set of terrestrial and space-geodetic data are
available to measure crustal deformation. Triangulation began as early as the 1850s,
trilateration with EDM in the 1950s, VLBI in the 1970s, and GPS in the 1980s (see e.g., Snay
et al., 1987; Hager et al., 1991; Shen et al., 1996]). To illustrate the methodology
developed in this paper, we have chosen a subset of the high-precision EDM data from 1972
to 1992 and GPS data acquired between 1986 and 1995 over a broad region from the western
Transverse Ranges south to the Mexicali Valley (Figure 2). For this demonstration we have
not reanalyzed the primary observations but rather used the previously analyzed quasi-

observations of loosely constrained, time-dependent positions (Table 1).

During this period there were seven earthquakes large enough to affect the EDM or GPS
measurements. In order to obtain robust estimates of both the velocities and co-seismic
displacements for stations in the region, we imposed separately on the north, east, and vertical

displacements a priori constraints of the form

o(x) = \/ [o. % (g—)]z + o2 (29)

where o, denotes the allowed displacement of the component at the earthquake epicenter, d
the depth of the earthquake epicenter, x the distance between the epicenter and the surveyed
station, and o is independent of the distance from the hypocenter. Such a definition roughly
approximates the expected coseismic displacements if the rupture is a screw dislocation in an
elastic half space and the station is not very close to the epicenter. Stronger constraints can be
applied by generating theoretical models for the earthquake from the seismic data or a set of

near-field geodetic measurements. The importance of the coseismic constraint is the strength
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it adds to the estimation of interseismic velocities, particularly those for stations several fault-
depths away which have only a limited span of observations before and after the earthquake.
The coseismic displacements can be estimated either explicitly (using o(x) as the a priori
constraints for coseismic displacement parameters) or implicitly (using o(x) as the
perturbations to the coordinate parameters when the quasi-observation epoch passing the
earthquake occurrence epoch). The earthquake displacement features can also be used to
account for monument instabilities [Dong, 1993]. In this case, only o is used and applied to
only specific components (e.g., height). The parameters used for each of the earthquakes in

our region are given in Table 2.

For the Landers earthquake there is evidence from GPS observations of postseismic
relaxation up to 55 mm for stations within 100 km from the fault within the first 34 days
following the earthquake [Shen et al, 1994]. In general, postseismic deformation is a
complicated phenomenon with different spatial wavelengths and temporal relaxation spans
and a simple exponential decay assumption may not be valid. Our software allows us to
estimate different velocities for the periods before and after an earthquake, and to account for
post-seismic relaxation by constraining the displacement parameters (Y(t) in Eq. (4)) to obey

a Markov process.
(a) EDM analysis

The EDM data used in this example were from the Joshua, Anza, Salton and part of the
Monitor networks surveyed by the USGS from 1971 to 1992 [Lisowski et al. 1991]. The
error model for the observations has the form ¢ = Vm where L is the line length
[Savage and Prescort, 1973]. This measurement uncertainty includes both a constant or
instrumental component and a length-dependent component due to errors in the model used
for atmospheric refraction and instrument frequency modulation. We used values of the
coefficients (a = 3 mm and b = 0.2 ppm) determined by Savage et al. [1986] and
reconfirmed by three recent analyses [Dong, 1993; Johnson et al., 1994; Savage and
Lisowski, 1995]. For the southern California networks used in our analysis, the intersite
distances are 4 to 46 km, leading to uncertainties of 3 to 10 mm in measured line length. The
EDM data used in this paper were precleaned with detected range busts had been corrected
and the a priori coordinates of most EDM stations were updated based on more accurate
collocated GPS station coordinates (see Appendices 10 and 13 of Dong [1993] for details).
The coordinates at a small number of stations could not be updated since these stations had

no sufficient baseline measurements. We set a criterion of 40 m to avoid coordinate
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adjustments which could exceed the linear range. Three trilateration measurements were

removed from a total of 2193 measurements.

The a priori constraints on horizontal coordinates and velocities at all stations were 20 m
and 200 mm/yr respectively. Since the trilateration measurements have very limited
sensitivity to vertical coordinate variations and the vertical length of EDM baselines is
typically less than 10% of the horizontal length, we set 2 m and 20 mm/yr a priori constraints
on vertical coordinates and velocities at all stations. Coseismic displacements from the first 6
earthquakes of Table 2 were estim.ated explicitly. There are several EDM stations which
occupied the same benchmarks. Hence, the coordinate and velocity estimates at these stations
were constrained to be equal. There are also several EDM stations located closely, usually
within 100 meters. The velocity estimates at these stations were constrained to be the same.
Thus, a total of 2189 EDM measurements were used to estimate 861 parameters (station
coordinates, velocities and coseismic displacements) at 119 stations. Our assigned constraints
reduced the effective number of estimated parameters by 344.96. The effective number of
degree of freedom is 1672.96 and the postfit nrms is 1.22. This postfit nrms is consistent
with the results of Dong [1993] and Johnson et al. [1994], in which they demonstrated that
scatters of the linear fit of the EDM baseline measurements at the Anza, Joshua and Salton
networks were about 10% to 20% larger than the nominal error model. Note that the EDM
derived velocity field from the loosely constrained solution is poorly determined since we did
not impose constraints on the network translation, rotation and their rates. However, the strain
rates of this solution are well-determined. We extracted the velocity solution and its
covariance matrix for 87 unique stations as the quasi-observation for the next stage GPS/EDM
combination. The resolution matrix contributed from the constraints (complement to the
contribution from the data) is also saved to compute the appropriate number of observations
in the EDM/GPS combination.

(b) GPS analysis

The analysis of the GPS primary data used for this study is described in detail in Feigl et
al. [1993], Bennett [1995), and Hudnut et al. [1996]. The error model is much less
understood than for EDM, however, because the instrumentation, satellite constellation, global
tracking network, and observing strategy have changed dramatically over the past decade.
For the quasi-observations included in our analysis, there are four sources of systematic error
known to be significant: inadequately modeled non-gravitational perturbations in the
motions of the satellites; inadequately modeled atmospheric corrections, including a problem

in the early software version leading to an incorrect elevation-angle dependence; oscillations
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in phase due to reflection of the signal from the ground or nearby objects (multipathing);
and unmodeled offsets and variations in the effective phase-centers of the receiving antennas.
The orbital and atmospheric errors are roughly proportional to baseline length and tend to
affect primarily the north and vertical coordinates. Multipathing and unmodeled antenna
phase-center variations affect predominantly the vertical coordinates and are highly
dependent on the local environment, type and separation of antennas, and the low-elevation
cutoff of the observations or analysis. The magnitude of these errors can reach several
centimeters in vertical coordinates but is usually only a few millimeters in horizontal
coordinates. The processing of primary observations using the GAMIT software [King and
Bock, 1995] assumed an a priori uncertainty of 10 mm in 30-s samples of (undifferenced)
L1 and L2 carrier phase measurements (equivalent to 64 mm in the doubly differenced
ionosphere-free combination). With this assumption, the nrms of the short-term scatter (over
several days) of relative-position estimates is between 0.5 and 1.5 for most of the surveys
included in our study, and the nrms of the long-term scatter (over several-years) is about 2
(see Feigl et al., [1993], and Bennett [1995]). Feigl et al.'s comparison of GPS and VLBI
estimates of station velocities also suggests that rescaling the GAMIT uncertainties by a factor

of two is appropriate to obtain realistic one-sigma uncertainties from these data.

Most of the GPS analyses were carried out by combining phase observations from
regional stations and as many North American or global stations as were available and
estimating simultaneously station coordinates and orbital and Earth-orientation parameters.
For the early surveys (1986 to 1991) in which only a limited number (3 to 10) of tracking
stations was available, multiday orbital arcs were used to strengthen the orbit determination
[Feigl et al., 1993]. The 1988 Salton Trough survey (STRC88) had such poor global
tracking that Bennert [1995] opted to use the broadcast ephemeris, constrained at the level of
5 parts in 107. At the other extreme, Bennett analyzed the 1995 experiment without global
tracking with the orbit he obtained from the Scripps Orbital Processing and Analysis Center
(SOPAC) [SOPAC staff, 1996] being constrained at the level of 5 parts in 108 (1 m in orbital
position). The 1993 Salton Trough survey was analyzed by using GLOBK to combine for
each day quasi-observations (including orbital parameters) from the regional analysis with
quasi-observations from a global analysis performed at SOPAC [Bennett, 1995]. The
Intercounty 93 survey was divided into 4 subsets: global network, PGGA network, regional
with Ashtech receivers, and regional with Trimble receivers. Different network rotations and
translations were allowed between the quasi-observations of the 4 subsets to reduce possible

system inconsistencies from insufficient antenna phase center modeling and orbital modeling.
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The 1990 Transverse Ranges survey (TREXI18) also consisted of multiple antenna types .

(TI4100, MiniMac, and Trimble) but with no rotations or translations allowed between them.

Except for orbital constraints in the STRC88 and STRC95 analyses, all of the daily
analyses were performed with loose constraints on all parameters, 20 to 50 meters for station
coordinates, 10 parts per million for orbits, and 50 milliarcsecond (mas) for Earth-rotation
parameters. These values are sufficiently large so that even with averaging over 500 stations,
they bias the final coordinate adjustments (cm-level) by less than 0.01 mm. After forming
quasi-observations from each daily analysis, we used GLOBK to combine these into a single
set of quasi-observations for each survey. In this step, orbital parameters are no longer
needed since their influence on other parameters is carried by the estimates and covariances

of the station coordinates and Earth rotation parameters (see proof in Appendix C).

The quasi-observations from all of the GPS surveys were combined, estimating a
consistent set of coordinates and velocities, with co-seisimic displacements being estimated
implicitly. We defined a reference frame by setting the a priori values of the coordinates and
velocities of 8 stations (i.e., Algonquin, Ft. Davis, Kokee, Mojave, Pietown, Richmond,
Yarragadee and Yellowknife; see Table 2.4 of Bennett [1995]) to those given by Feigl et al.
[1993] from the combination of GPS and VLBI results, and applied constraints of 10 cm to
the horizontal coordinates, 20 cm to the vertical coordinates, 1 mm/yr to the horizontal
velocities, and 10 mm/yr to the vertical velocities. We applied loose a priori constraints to the
coordinates (10 m) and velocities (200 mm/yr) of all other stations. In order to avoid
corruption of the horizontal velocity field from large errors in vertical components due to
incorrectly recorded heights and unmodeled phase-center variations of the antennas, we
allowed a 0.04 m2/yr stochastic variation in the vertical coordinates of all of the stations.
Constraints of 30 mas, 0.5 mas, and 1 m were assigned to network equatorial rotation, network
axial rotation, and network center translation respectively (see equation (4) for definitions).
We allowed the network to rotate and translate freely between non-adjacent experiments by
assigning 3000 mas2/yr, 0.5 mas?/yr, and 300 m2/yr stochastic perturbations to equatorial
rotation pole, axial rotation pole, and network center translation respectively. Larger a priori
constraints and perturbation about the polar axis are unnecessary since the axial rotational

variations are effectively absorbed by the looser constraints on orbital parameters.

After new quasi-observation data entered the Kalman filter and the parameter adjustments
were updated, we transformed the coordinate and velocity adjustments from Cartesian to
geodetic representation, and tested the compatibilities of the horizontal coordinate and

velocity adjustments (2-dimensional), and vertical coordinate and velocity adjustments (1-
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dimensional) separately. Incompatibility criteria were set at the 95% confidence level for
horizontal components (2.450) and vertical components (2¢) after multiplying the formal
uncertainties by a factor of two, as discussed above. Most data sets appeared compatible from
the initial run but some incompatibilities remained. After inflating the covariance matrices of
TREX18, IC93 Ashtech subset, and IC93 PGGA subset quasi-observations by additional
factors of (1.5)2, (2.0)2, and (2.0)2, all incompatibilities disappeared. We suspect that the
incompatibilities for these two surveys result from the combination of subnets in which the
overlapping stations were analyzed inconsistently or introduced errors due to unmodeled
antenna phase-center variations. The compatibility of all of the surveys is indicated by the
chi-square increments from the forward and backward filters, shown in Table 1 after the
rescaling has been applied to TREX18 and IC93 but without the factor of two rescaling of the
original quasi-observations. A total of 1188 quasi-observations were used to estimate 691
parameters at 114 stations. Our constraints reduced the parameter dimension by 112.64 and
the stochastic perturbations increased it by 144.36. Thus the total degree of freedom was
466.28 and the postfit nrms was 1.82.

The GPS velocity solution is shown in Figure 3 with respect to a reference frame fixed to
the North American plate. Our solution is statistically consistent with the earlier work of Feigl
et al. [1993] and Bennett [1995] who used a similar approach and software but did not
downweight the data from TREX18 and IC93. The net effect of our reweighting is to reduce
the overall chi-square and improve the uncertainties for stations not heavily dependent on
these two surveys. We have included 15 stations (AGUA, ALAM, ANZA, EDOM, INDO,
JUR3, PSAR, RIAL, ROSA, RYAN, SANI, SIPH, THOU, TRAN, and VIEW) which have large
uncertainties from the GPS analysis but may be improved by a combination with the EDM if

there are nearby EDM stations.
(¢) EDM/GPS Combination

In the final step of our analysis, we combine the GPS derived velocity solution with the
EDM-derived velocity solution. Since the scale difference between the EDM and GPS
measurements is not completely resolved yet, we do not directly combine the EDM and GPS
derived coordinate solutions to avoid biasing due to the unknown systematic differences
[Savage et al., 1996]. For the GPS derived velocity solution, we extract the velocity estimates
and their sub-covariance matrix at 73 regional stations with redundant stations removed (e.g.,
stations close enough together that their velocities were equated in the solution). This
suppression of parameters has no affect on the solution (see Appendix C) but greatly reduces

the computational burden. For the EDM derived solution, we also removed the velocity
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estimates for stations that are redundant or have weak estimates. In the combination, we
rescaled the covariances of the GPS and EDM quasi-observations by factors of (1.82)2 and
(1.22)2respectively to make their nrms close to unity. To avoid introducing extra
information in the combination, we assigned 10 m/yr a priori uncertainties for velocities of all
stations. We tied the two data sets by forcing the horizontal velocities at the following station
pairs to be equal (upper case is GPS; lower case is EDM): PIN1 and asbestos, NIGU and
niguel, MONU and monu_res, BERD and berdoo, 0225 and off_225, VIEW and view, TRAN
and salton, SIPH and coach, OCOT and dixie, EDOM and edom. The observation number is
370.70 computed from the data contributed resolution matrices. The number of estimated
parameters is 480. Constraints reduce the parameter dimension by 123.40, yielding 14.1 for
the number of degrees of freedom of the combination solution . The nrms is 0.84, indicating
that the GPS and EDM velocity quasi-observations are compatible and that our defined postfit

x? and degrees of freedom are self-consistent.

The GPS/EDM combined velocity field is plotted in Figure 4. This combined velocity
solution passed our compatibility test. Comparison of Figure 3 with Figure 4 shows that the
combination of the GPS and EDM velocity solutions not only densifies the derived velocity
field, but also strengthens the estimates for many of the stations. The network orientation at
the EDM stations is defined by the constrained velocity vectors at strong GPS stations such as
PIN1, MONU, and NIGU. The value of these constraints is best illustrated by the large
rotational uncertainties that remain for stations in the northern part of the Joshua-Anza
network, which has only EDM stations. Similarly, the EDM measurements have reduced
significantly the velocity uncertainties of the 5 stations that were weak from GPS

measurements alone.

In Figure 5 we show an enlargement of the GPS-only and combined velocity fields for a
70-km square region spanning the San Andreas fault. In the combined solution (Figure 5b)
the velocities of the GPS stations at EDOM, VIEW, PIN1, BERD, TRAN, and SIPH have been
equated to nearby EDM stations and show considerable improvement compared with GPS
alone (Figure 5a). The well-determined velocities at GPS station PAIN are not equated to the
velocities at nearby EDM station mecca and hence show the consistency of the two data sets.
The elongated ellipse belongs to the two VIEW velocities (coincident in the plot),
demonstrating that the GPS determined weak velocity estimate at VIEW has been improved
only in one direction because the EDM station view has only single baseline measurements
connected to the EDM network. In order to show the one-direction improvement at VIEW,

we did not equate the velocity estimate at VIEW with the velocity estimate at a nearby EDM
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station (inspencer) whose velocity is consistent with VIEW and is well determined in the

north-south direction.

8. Conclusions

A combination of space and terrestrial geodetic data effectively strengthens the velocity
solution. The quasi-observation approach provides greater flexibility and efficiency in
combining various types of geodetic measurements without losing tectonic information.
These quasi-observations are obtained by analyzing primary data using loose constraints.
Loose constraints are necessary to minimize the inconsistencies between different data sets
and between different types of geodetic measurements. Only in the final combination stage is
a homogeneous reference system established by tightly constraining coordinates and/or
velocities at several stations. Such an approach also makes some weak data (such as STRC88)
useful for the deformation analysis since the local stations can be strengthened by later strong
data under a homogeneous reference frame therefore improving originally poorly-
determined orbits. However, the quasi-observation approach also raises some unresolved
problems, in particular for the statistics. We have developed useful tools to determine the
increment of postfit 2, to perform a compatibility test for a combined solution when both
data and parameters are added, and to calculate an appropriate degree of freedom and nrms
when both constraints and perturbations are applied. Note that the deformation analysis is a
very broad area which can not be covered by a single paper. Some important issues, such as
the optimal quasi-observation data reweighting, the colored noise model rather than white
noise model in data analysis, and the time-dependent deformation such as the post-seismic
deformation, are not discussed in this paper. Furthermore, the geodetic quasi-observation
data combination is not yet fully covered by a rigorous statistics theory so that many
investigators including this study must use some empirical rules to reach a resolution. The
example presented in this study is a good example for addressing the importance of adopting
appropriate constraints, compatibility test and reasonable statistics, but not for a velocity field.
A more reliable velocity field in this region should be derived using the reanalyzed GPS
quasi-observations to reduce some significant problems such as the ill-conditioned covariance
matrices. Although the method presented in this paper is primarily used to estimate a
regional horizontal deformation field from a combination of geodetic data, it can be easily
extended to estimate a vertical deformation field by incorporating leveling and gravity

observations.
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Appendix A

Linearized observation equations for various primary observations

We present all estimated parameters in the geocentric Cartesian frame. Detailed
derivations of these linearized equations can be found in King et al. [1985] for GPS
measurements, in Herring [1983] for VLBI measurements and in Collier et al. [1988] for
terrestrial survey measurements. In analyzing primary observations, we estimate only the
time-dependent station positions AX(a,t) (simplified as 6X in this section) and reparameterize

the time-dependent station positions AX(a,t) by (4) at the next combination step.

1) Baseline and baseline rate vectors in geocentric Cartesian frame:

6(dXij) = ij— SX,, S(dVij) = 8V0j-= SV()i (A.1)

2) Astronomic longitude A, latitude ®, and gravity g:

8A (gocosto]' 0 0
50 |= 0  go! O|Ro[MB3X+ AaUoXo)
X (A.2)
dg \ 0 0 1
where
go is the a priori gravity, ¢g is the a priori geodetic latitude, and
~ax?
is the Marussi tensor of second-order derivatives of U [Hein, 1986].
Ry is defined by
~ sin A(t) cos A(t) 0
R(t) = | —sin ®(t) cos A(t) —sin P(t) sin A(t) cos d(t) A3)
cos O(t) cos A(t) cos P(t) sin A(t) sin P(t)

with the a priori astronomic latitude ®q and longitude Ag.

If the disturbing potential AU is dominated by known mass anomalies, then the AU
term in (A.2) represents the deflections of the vertical for astronomical latitude and longitude
A and @, and the topographic gravity anomaly [Hein, 1986]. We impose the corrections of
the deflections of the vertical and the topographic gravity anomaly in advance, so that (A.2)

becomes
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SA (goCOSq)oyl 0 O
b |=- 0 go! 0 |[RoM X (A.4)
dg 0 0 1

3) Horizontal and vertical angles and mark-to-mark distances
From local station i to station j, the distance is /(t), the azimuth is a(t), and the vertical
angle is B(t). The linearized observation equations of triangulation, leveling, and trilateration
are expressed as:

da (locosBo)'] 0 O

58 |= 0 I of[s"Ro (axj—sx,)-Klz—gM 5X, ] s
51 o o0 1 '
where
cos 0y —sin 0 sin Bg sin o cos By
S=| —sin g —cos 0 sin By cos oty cos Po (A6)
0 cos Bo sin By
lo (tan ¢ cosPo — cosay sinBo) lp sinoyg sinPg O
K= lo sin o lpcosog O A7)
0 0 0

and the zero subscript indicates values calculated from a priori coordinates.

As mentioned before, the left-side terms of (A.5) have included the corrections for
the deflection of the vertical. For direction observations, we adopt auxiliary parameters to
account for the unknown arbitrary azimuth of the first "pointing" in each "zero". This
approach is equivalent to the angle difference method, but the latter must construct a full,
rather than a diagonal, covariance matrix to describe the correlations among observations
[Prescott, 1976].

4) GPS carrier beat phase

80i(0) = - TLI5X ()-8X°(0] + 8010 + %9 +b a0
where

i = 1,2 corresponding to two carrier frequencies fy, f; ,

8¢; are carrier beat phases ,

t is the receiver time, c is the speed of light,

8X(t) and 6X3(t) are time-dependent station and satellite positions,
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&¢;t*< are phases from tropospheric delay, transmitter and receiver oscillator,
K is ionosphere refraction variable,

b; are mixture of ambiguity and initial phase offset

5) Range to a satellite
8p(t) =[8X (1) - X3t + 8pP(1) AL
where
dp(t) is the range from receiver to satellite,
O0X(t) and 3X5(t) are time-dependent station and satellite positions,
dpP(t) is the range from various perturbation sources to which the observable is
sensitive, such as geopotential model, tidal model, drag and solar radiation pressure models,

Earth rotation parameters, efc.

6) VLBI group delay

¥(dXi(1)) - e
C

St(t) = - >+ 8TP(t)

(A.12)
where

d1(t) is the group delay observable,

3Xij(t) is the baseline vector,

e, is a unit vector towards the radio source, c is the speed of light,

31P(t) is the group delay from various perturbation sources to which the observable is
sensitive, such as troposphere and ionosphere delay models, nutation model, radio source

structure parameters, eic.

Appendix B:
Sum of the squared residuals ()2)

In the case of time-invariant parameters and without state perturbation, our definition
of (13) becomes

N T - ~ PaS - -~
X1 XE= Bl 1-Aks18%ka 1) Pih (Bl 1-Aws18Kis ) +AXT 1 Gl ARy (B.1)

Where AXks1 = 8Xk41 - OX (B.2)
&%k = CL A] P! 8l (B.3a)
Ci=(aT Pl A" (B.3b)
%2 = (81 - Ay )" Py (Bl - Ay Ri) (B.3c)

In (B.3c) Ol represents observation vector from t; to ty. Thus (B.3c) represents the sum of

squared residuals from ¢t; to t.
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By adding observation 8li,; = A1 OX + €41 at tyy, the least squares solutions for

all observations are
8;‘\k+l = Ck+l (AI Pi(I 8Ik + A'l{+l Pi(l'i-l 81k+l)

~ - -1 -~
= SXk + Ck AI+1 (Pkl-bl + Ak+ICkAE+1) (51k+l-Ak+16xk) (B4a)
; T . -1
Cir1 = (AE Pl A+Axs PR Ak+l) (B.4b)

2201 =(Oh-ArdRicr 1) PR (8- A 8Ricr 1 1Bl 1-A ks 18R ) P (Bl 1-A k1 SR 1) (B.4c)
Using (B.2) and (B.3c), we get

(O1ic-A (SR 1) Py (B1i-A SR 1) = X2 + ART, ) AT P! Ay ARy

- (81-A 8% Pl A ARysr - ARTATPL (Bl-AKSRY)  (B.5)

(B.3a) and (B.3b) imply

(81i-A k8% Py A = AT (Bli-A4 8% ) = 0 (B.5b)
Substituting (B.3b), (B.5a) and (B.5b) for (B.4c), we get (B.1). Thus, we proved that in the
case of time-invariant parameters and without state perturbation, our definition (13) is

equivalent to the classical definition of 2.

The Kalman gain can be written in another useful form

-1 T - LT -1
Kir1 = (Cibaie + Aar Pikt Ake))” At Py (B.6)
Substituting (B.6) for (11b), we have
-1 -1 T p-l
Cit1 = Gt + Ak Piay Axa B.7)

This is just the standard weighted least-squares increment to the information matrix. (B.6),
(B.7) and (11a) give

ARks1 = Crrik A gt Pitey Ol - A 18%i41) (B.8)
Using (11a) and (12), we also get

Sk 1Ak 18Rk 1=Pics1 (P 1+ Ak 1 Cr kAT 1) (Bler1-Akcs 18Rk 1) (B.9)
Substituting (B.8), (B.9) for (13), we obtain (15)

Appendix C
Reparameterization

Let x and y be two different parameterizations of the same observations /,
I=A, x + €, Wwithcovariance C; (C.1)

I=Ayy+e€y withcovariance C; (C.2)
Assuming the dimensions for /, x, y are n, mx, my (n 2 my 2 my) respectively, and €, €y are

Gausian, the least square estimates are well known:
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x=(ATc' A AT 't (C.3)

;=AY ct Ay’ (C4)
y=(aTci' A, AT City (C.5)
c;=(AT ' A, (C.6)

The weighted sums of squared residuals (2) are
12 =(I- AXTGH(1- AX) = 1Tl - ITC A C; ATCH .7
13 =(1- AFI'C' (1- A) = 1TC1 - TGl Ay C5 ACE C.8)
Both X% and X% obey x2- distribution with n-my, n-my degrees of freedom respectively.

1) Use Y and C’); as quasi-observations to estimate x

It is easy to prove that if we construct a quasi-observation equation

')7 =B x with covariance matrix Gy (C.9
the solution is: ‘

£=(BTcB)' BTG §=(33) (C.10)

c:=(BTc B)' =34 (C.11)

~ ~\T A A~
X2 = (Y' BX) C? (y' BX) = X% - xg' (C.IZ)
The 2 also obey x2- distribution with my-my degrees of freedom. In most practical cases, the
information of n and %3 is lost in the quasi-observation data files. Thus, the statistics of X7 is
2 2
xx Xy
n-my’ n-my

. _r 2
in general not the same as the statistics of Xx unless n>>my>>mx and have the

same expectation, such a case is usually not valid in the deformation analysis because the error

spectrum (the long term error vs. the short term error) is more likely not flat.

2) Use Y and C’; as quasi-observations and add extra parameters xg 10 x

The quasi-observation equation is

y = (Bx Bxu)(; ) (C.13)

a

To distinguish from (C.10) and (C.11), we use X and C3 to denote the estimated subsolutions
of (C.13). After some manipulations, we obtain the relations

X=X+Q12Q%: %, (C.14)

Cz=C3 +Qi2 Q32 Qo (C.15)
where

C;=Ni', Ci=Qii. Qiz=-NitNi2Qx=0Q}

Nip=A{C' Ay, Nu=ALC' Ay, A,=AyBy, (C.16)

. 1
Q= (N22 - Npy N le) = Cy,
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From (C.11), it is straightforward to get

Czs=0Q12 Q22 Qa2 (C.17)
Then

Ci =G+ Cxix (C.18)
If the parameters X, actually do not exist, the expectation of the observation is

E{l}=AxX (C.19)

From (C.16) and using (C.19)
E(X} = E{X) + Q12 Q32 (Qz1 AT Gi' + Q2 AT, Gi') E(1)
=X+Q12Q25(Q21 N1 + Q22 N2 )X =X (C.20)
If the additional parameters x, do not exist, X is still an unbiased estimate of x, but its
covariance is enlarged (see (C.18)). On the other hand, if the additional parameters x, do
exist, the omission of x, will underestimate the variance of x and lead to a biased estimate X

unless the expectation of x, is zero.

3) Two data sets related to two sets of parameters with only part of the parameters in common
Assume the first data set is related to parameters x| and x and the second data set is

related to parameters x, and x3. The typical example is to consider space geodetic data as the
first data set and terrestrial survey data as the second data set. In this case the quasi-

observation equations are

Xy ' X
(,\ )=( IO EO )(xl ) with covariance matrix C =( Cu Ci ) (C.21)
X2 2 A2 Cu Ca
The combined normal equations are
Np Ni2E» 0 \/x N1 1X1+Nj2X;
EINy; EJNpEs+Azpn Ajs XZ) By+EJN X1 +EIN2o%) (C.22)
X3 .
0 Az A3z Bs3
Here N=C-L.
Solving x| implicitly and using the matrix partition formula, we obtain
EJCHEr+Ay Az |(xy Br+EJCH%;
(X )= (C.23)
Az Ass 3 Bj

This important result shows that if we do not care about the estimate of x;, we can use only the
common parameters xp and their covariance submatrix Cp, as the quasi-observations. The

result is as rigorous as using all parameters.

4) Use part of the solutions to estimate another set of parameters
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Assuming the solutions include parameters x; and x3, we attempt to use x2 to estimate
another parameter set up. A typical example is to estimate fault slips (u2) from episodic
station displacement estimates (X5)-

(:\1 )-‘—( B E(; )(ﬁ;) with covariance matrix C -_—( gll (C:12 ) (C.24)

2 21 22
As has been proved above, using X, and its covariance submatrix Cpp as the quasi-
observations, we can obtain the same estimates directly by estimating x; and up from the raw
data. Since the episodic station displacements better describe the real coseismic deformation
field than the fault slip parameters, such an approach enables us to leave the model errors in

the residuals without distorting the original estimate of X1.

Appendix D
Solution changes in the case of adding new data and new parameters

It is instructive to first look at the classical case of time-invariant parameters and
without state perturbation. Assume the original data [ relate to the parameters x, and the new
data [, relate to parameters x and y. X are the original estimate and X142, Y142 are estimates

from data l{+{;.

l; = A| x 4+ g with covariance Cj; (D.1)
I, =By x + By y + & with covariance Cj, (D.2)
The covariance matrices are .
n=(aTcla)! (D.3)
Cf <[ ATC1A+BICiEB,  BICIB, "=( Ny Niz )—12( Qi1 Q2 )
(§1+2) BICiiB, BICi}B, N2; N2z Q21 Q22 (D.4)
R = Q11 (D.5)
The solution change of parameters x can be derived as
2142 - %1 = (QuAATcilA ) ')ATCit 1 +(QiBT+Q1zBY) Cib (.6)

Since the two data sets are uncorrelated,

ca=Qu-(aTcita ) aTcia (o {aTcita ) ' QuBT+Q12BI)CiBIQ11+B2Q21)
=(QNy; + Q12N21 - ) Q1 - Qpp + G5, +(QiN12 + Q12N22) Q24
From the well-known relations,
Q11N +Q2N2y =1 and QN2+ Q2N =0
We derive the very simple result

G ’)El = ,)E| - CX (D7)

Xi42- X142
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In the general case of allowing time-variant parameters and state perturbation, the

Kalman filtering formulation gives (see (11a))

8Xke1 - Xk 11k = Kicat (Blice1 - Aet SXica11k) (D.8)
Note that 8li,; and Xy, are uncorrelated, therefore

C’ik“-;h..k = Kk+1Pk+1KE+1 + Kk+1Ak+le+1IkAE+1KE+l (D.9)
From (12),

Kis1Ake1Cra 1Ay, = Kk+l(Ak+lCk+1IkAI+1+Pk+1“Pk+l)

= CiriikAis1 - Kir1Pis 1

Thus (D.9) is reduced to

Chuntem = Crelic Agr Ky (D.10)

Replacing the right hand term of (D.10) by (11b), we get

CreFem = Ciaic - Ciat (D.11)

Such a relation can be extended to the backward filter with the Gelb's weighted mean
smoothing algorithm [see Herring et al., 1990 for details]. Let 8Xy,; and Cy, represent the
forward filtering solution and covariance matrix at epoch k+1, 5§k+llk and Cy, ik represent
the predicted solution and covariance matrix at epoch k+1 from the forward filtering solution
at epoch k, 5§k+1|k+2 and Cy,1k+2 represent the predicted solution and covariance matrix at
epoch k+1 from the backward filtering solution at epoch k+2. The smoothing solution and its

covariance matrix will be

SRl = OXica 1+ M(BKic k42 - OXic1) (D.12)

Ci+1 = Cis1 - MCyy (D.13)
where

M = Cis1 (Ciat + Cratiks2)™! (D.14)

Similarly, we can define another "smoothing" solution at epoch k+1 using all data except the

data at epoch k+1:

SXk+1 = OXiw 11t M ™ (BXica 1142 - i 11k) (D.15)
It can be proved that

Crot1 = Cratik - M"Crpii (D.16)
where

M" = Cis1ik (Ciatik + Cratis2)™! (D.17)

Since 8Xy4; and 8Xy, i are uncorrelated with 8Xy, k42 , direct manipulations lead to
~ s — F s
Coxrni-omen = Ciat - Cia (D.18)

31



Appendix E

System constraints

We parameterize the relation between the estimated coordinates from the loose analysis

and the a priori coordinate system as

%, =x, +TO+dx, (E.1)

where X, are the parameter estimates from the loose analysis, xq are the a priori values of the

parameters; 0 are the transformation parameters; T is the Jacobean relating the transformation

parameters to the analysis parameters and Ox, are the residuals of the loose analysis after

applying the transformation. The transformation parameters 6 can consist of rotations,
translations and scale paramcters. The rows of T corresponding to the parameters that are not

station coordinate parameters are null. We now seek the estimates of 6 which will minimize

T
ox, W oix,, (E.2)

where W is a weight matrix. The weight matrix is formed such that the height coordinate is
given less weight than the horizontal coordinates (usually 10 times less weight), and only
selected stations are weighted in W; i.e., not all stations are used to estimate . The estimates
of 6 are obtained by conventional weighted least squares analysis, which we express in the

form

- -1
6=T Ax, =(T"WT) T'Wax, L

where T~ is the generalized inverse of T and Ax,= X,,-x,.

The rank deficiencies of the system are removed by forcing the estimates of 6 to have

zero variance. From equations (11a) and (11b) we then have

2. =%,-K.0 (E.4a)
C,=C,-K.T°C, (E.4b)

where the constraint Kalman gain matrix is given by equation (12)

T T\"!
K,=C,T" (T"C,,T“ ) (E.5)
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and Cp, is the variance-covariance matrix of parameter estimates from the loose analysis, and
we have reversed the sign of 6 so that transformation parameters will be removed from the
loose analysis results. (As given in Equation E.1, 6 represents parameters to transform the a

priori coordinates to the loose analysis results).

If the parameters in O represent true rank deficiencies in the loose analysis or if w-l=Cp,
then Kc=T and equation E.4b reduces the least squares definition of the variance-covariance
matrix of the postfit residuals. We have confirmed the former numerically and the latter
analytically. For the above cases, quantities that are invariant under the transformation T are
not affected by applying the constraints nor are their variances. Specifically, if T represents
only rotations and translations, then baseline lengths and their variances are not changed by

the application of equation (E.4).

For VLBI measurements to extragalatic quasars, both translation and rotation are rank
deficiencies and therefore @ should contain both types of parameters. For GPS, only rotation
is a rank deficiency unless explicit parameters are added to the analysis that allow the
coordinate system to translate. For neither system is the scale a rank deficiency although
given the points noted above it might be prudent to include scale parameters in the analysis.
Errors in the antenna phase patterns will cause all heights to be systematically biased, which

will appear as a scale error.

In Figure E.1 we examine a specific example of the effects of applying coordinate system
constraints in an analysis of GPS data from 80 global stations. The results in this figure are
for the case when explicit translation and scale parameters are not included in the analysis. As
a measure of the impact of the constraints we show the changes in baseline lengths when the
constraints are applied. (If explicit translation and scale parameters are included then the
changes in the baselines lengths are zero for the translation parameters and simply the scale
change for the scale parameter). The figure shows the effects of separate 1 m translations in
the X, Y and Z coordinates and a 160 parts-per-billion (ppb) scale change (equivalent to a 1 m
height change for all sstations). Since the constraints are a linear operator, the effects in
Figure E.1 can be scaled in proportion to more realistic translations and scale change. From
Figure E.1 it is clear that applying the constraint in Equation (E.4a) is not the same as simply
translating or scaling the GPS results. This is particularly true for the scale change where the
difference between a simple scaling and the constraint can be a factor of 5 times larger than
the scale change itself. For the translations, the correlations beiween the position estimates
does allow for changes in position that are more of a translational nature. Figure E.1 (a)-(c)

pose an interesting question: are GPS results better when the coordinate estimates are forced
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to the expected center of mass, or is it better to allow them to translate freely? The answer to
this question depends on the quality of the a priori coordinates and how close they lie to the
true, instantaneous center of mass. We have found mixed results when the repeatabilities of
stations coordinates are compared with and without explicit translation and scale parameters,

and we leave this question unresolved and awaiting further study.
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Table 1. Primary observations used in the combined analysis

Survey Condition number? 5x2
GPS forward backward
Salton Trough / Riverside County Bennett [1995]
STRC88 9.5x107 0.006 1.565
STRC90 5.9x107 0.126 1.570
STRC91 NPDb 1.574 1.185
JTRE9?2 (pre-EQ) 1.3x108 1.311 1.211
JTRE92 (post-EQ) 2.6x108 0.915 0.855
STRC93 5.4x1010 0.452 0.701
STRC95 6.4x1010 3.297 1.433
Intercounty IC93 Hudnut et al. {1996}
IC93 Ashtech subset 5.6x107 0.416 1217
IC93 Trimble subset NPDP 0.735 0.211
IC93 global subset 5.1x108 3.054 3.991
IC93 PGGA subset 5.6x108 3.570 0.120
Mexicali Valley Bennett [1995]
GEOMEX 89 1.1x108 2.316 6.636
Transverse Ranges Feigl et al., [1993]
TREXO00 (June, 1986) 1.2x108 0.022 2.029
TREX10 (March, 1988) 1.9x108 0.170 1.565
TREX13 (March, 1989) 2.4x108 1.293 4.233
TREX14 (March, 1989) 2.2x108 0.845 1.420
TREX16 (March, 1989) 1.2x109 2.454 2.468
TREX 18 (March, 1990) 5.9x107 246 1.126
TREX20 (March, 1991) 9.3x107 4.250 0.271
Santa Barbara Channel Feigl et al. [1993]
SBC91 3.2x107 1.574 1.185
EDM Lisowski et al. [1991])

Joshua Tree (1974-1992)
Anza (1973-1991)
Salton (1972-1991)
Monitor (1974-1990)

a Condition number is estimated as the ratio of the maximum eigenvalue over the minimum eigenvalue of
the covariance matrix of the loosely constrained quasi-observations.

b The covariance matrices for these quasi-observations were non-positive definite (NPD), for reasons that are
unclear. We removed the singularity by adding diagonal consider covariance matrices with diagonal terms (4
mm)2 and (3mm)2 for STRCY1 and the IC93 Trimble subset, respectively. Adding small terms to the
diagonals keeps the large eigenvalues of the original covariance matrices unaffected while effectively masking
the smallest eigenvalues.
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Table 2. Earthquake parameters used in the analysis of the southern California data

Event? Date

Homestead Valley Mar 15, 1979
Westmoreland Apr 26, 1981
N. Palm Springs Jul 8, 1986

Superstition Hills Nov 24, 1987
Joshua Tree Apr 22, 1992
Landers Jun 28, 1992
Northridge Jan 17, 1994

a We do not assign a priori values for the first 4 earthquake induced displacements. Thus we set larger

5.6
5.7
6.0
6.2
6.1
7.5
6.7

constraint values for the coseismic displacements.

b Since the Northridge earthquake influenced only a few stations close to the northwestern boundary of our
region at the level less than 0.4 mm based on the model of Hudnut et al. [1996], we used the model-predicted
values as the a priori values of the coseismic displacements at these stations and assign the constraints as

100% of the model predicted values.
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Figure captions

Figure 1. Effects of applying a priori constraints on height estimates in a loosely constrained
GPS analysis. Results from two stations are shown, one in North America (large closed
circles) and one in Tibet (large open circles). These results were generated by applying a 1 m
height change to the a priori coordinates of each station, and analyzing the GPS quasi-
observations with standard deviations assigned to these heights ranging from 1000 to 1 mm.
All other sites in the analysis were constrained with standard deviations of £100 m. The thick
dotted lines show the effects of these constraints from Herring et al. [1990]. (The stippled
curve for the closed circle results is overlain by the open circle results.) The thin lines and
small circles show the ratio of the height error from the analysis and the predicted error. The
prediction is always within a factor of 2 for this analysis.

Figure 2. Map of southern California showing the GPS station (triangles) and USGS EDM
networks (named with italics and linked with solid lines). The main tectonic domains and
faults are labeled with bold italics: eastern California shear zone (ECSZ), Ventura Basin (VB),
southern Borderlands (SBL), San Andreas fault (SAF), San Jacinto fault (SJC), Elsinore fault
(ELS), Cerro Prieto fault (CPR), and San Clemente fault (SCL).

Figure 3. GPS-derived velocity field relative to a reference frame fixed to the North
American plate. The error ellipses are constructed from the one sigma uncertainties of the
horizontal components and hence represent regions of 39% confidence in two dimensions.
The a priori errors assigned to the GPS data (see text) have been rescaled by a factor of 1.82
to make the chi-square per degree of freedom equal to unity.

Figure 4. GPS/EDM combined velocity field relative to North America plate fixed frame.
The GPS errors have been scaled by a factor of 1.82, and the EDM by 1.22 prior to
combination (see text). Error ellipses are the same as in Figure 3.

Figure 5. Enlargement of the GPS-only (a) and combined (b) velocity fields shown in Figures
3 and 4.

Figure E.1. Changes in the lengths of the baselines when the constraints in equation (E.4a)
are applied to a GPS analysis in which there are no explicit translation or scale parameters.
The cases shown are (a) | m X translation, (b) 1 m Y translation, (c) 1 m Z translation and (d)
160 ppb scale change (equivalent to 1 m height changes).

41



1000.0

Height Error (mm)

100.0

10.0

1.0

0.1

T |Illll|| T ‘l!lllll T lIIlIHi

T L lllllll

LI B B NI B

l||l®

1 !lllllll

i 1 Illllll

i 1 lllllll

Ilill 1 1 l]llll‘ 1 1 IIIIIlI 1 1

1 10 100 1000
Apriori Sigma (mm)



Figure 2

(with multiple epoch observations)
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