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This paper investigates the applicability as wel{ as the accuracy of artificial neural networks for
estimating specific parameters that describe reservoir properties based on seismic data, Our
approach relies on JPL’s  adjoint operators general purpose neural network code to determine
the best suited architecture, We believe that results presented l; this work demonstrate that
artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.
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L INTRODUCTION

The oil industry acquires and must process large
volumes of geoscience data of various type to locate
prospective places for oil and gas reservoirs. This data
is extensively manipulated before it is analyzed and
interpreted. Every data manipulation step is
important, and processing “time can be extensive.
Hence, it is imperative that the efficiency of the data
manipulation and data reduction be improved. This is
where Artificial Neural Networks (ANNs) may help
the oil industry.

The characterization and prediction of reservoir
properties is one major area where ANNs may offer
improvement, Seismic data is used to characterize
large volumes of the Earth’s upper crust. However,
this data provides only gross structure information on
the size and orientation of the various underlying
strata. On the other hand, well log data provide a
detailed characterization of the strata but only in a very
localii  region, and it is far more expensive to obtain
than the seismic data. To find a reservoir and
characterize it, one must associate the detailed well log
data with the seismic data. This will allow one to
accurately extrapolate detailed information over a
large volume. The strength of ANN techniques lies in
their ability to capture and approximate nonlinear
mappings between two data sets; in this case the
relationship between well log and seismic data. Thus,
the use of ANN techniques may improve the efficiency
and accuracy in the manipulation of geoscience data.
The research results reported here address the
applicability as well as the accuracy of ANNS in
estimating specific parameters that describe reservoir
properties based on seismic response information.
To test the effectiveness of ANNs in predicting
different reservoir properties, we start with a suite of
well logs from a well in a known oil field. The first

step is to generate blocked logs that have a limited
number of layers with constant layer properties 1].
Then we generate a suite of elastic models by
perturbing the following reservoir properties in the
depth interval of interest: water saturation, effective
porosity, sand thickness, and sand/shale ratio. For
everyone of these perturbations, we generate a
synthetic seismic shot gather. For more details on
different prestack attributes used in the oil industry see
Ref. [2]. For every gather, we compute different
seismic attributes within the time window of interest.
The attributes used in this study are:

Reservoir Parameters
SWE Sand Water Saturation
EFFPOR Sand Effective Porosity
THICKNESS Sand Thickness
RATIO Clay/Sand Ratio within sands

IJtismic  Attributes
DEPZH /
TM.
GREF-O

SI.OPE-O
GREF-I

SLOPE-1
GREF-2
SLOPE-2

GREF-3

SLOPE-3

SLOPE-4
SLOPE-5
SLOPE-6
SLOPE-7

depth (ft.)/Two-way Seismic Travel
Time
Normalized, Rectified Near Offset
Amplitude (AVO)
AVO Least Squares Slope of GREF-O
Intercept of Fit to Normalized,
Rectified Amplitude Fit
Fluid Factor Attribute
(Ro-Rwet)  of Unnormalized  Intercept
(G-Gwet)  of Unnormalized Signed
Amplitude Fit
Ro Intercept of Unnormalized  Signed

Amplitude Fit
G or Slope of Unnormalized  Signed
Amplitude Fit
@o+ G)/2 of GREF-3 and SLOPE-3

Another combination of the above
RO*G
(Ro + G)/2 of Normalized, Rectified
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Amplitude Fit
MNT p-wave Velocity of Sands
SVINT s-wave Velocity of Sands
RHOB Density of Sands

With various perturbations of the reservoir properties,
152 seismic records were generated. Each r&.ord
consists of as many as 338 sample points at which the
above mentioned attributes were determined, Our
immdlate  goal is to predict, using ANNs, selected
reservoir parameters from some or all the 17 seismic
attributes. Following vdldation of the ANN
approach the longer term objective is to apply these
techniques to large-scale seismic datasets,

In this paper, presents the results of applying ANNs
to two of four main reservoir parameters, i.e., Sand
Water Saturation and Sand Effbctive Porosity. Our
methodology for preprocessii  the input dat%
inc lud ing  dimensionrtlity  reductio~ and data
transformation for maximum fmture-class  separability
are described in a companion pape~6].  There, we also
report results on pre&ting another key reservoir
parameter, i.e. the sand thickmxw

2. APPROACH

At the outset it was decided to use a separate ANN to
predict each main reservoir parameter,’ rather than use
a single ANN to predict all parameters simultaneously.
This approach offers several advantages. First, it
aliows us treat the prediction of a each parameter of
interest as a separate probleq  independent from the
others. Thus, we can tailor our approach specifically
to a given parameter. For example, in our reservoir
analysis, we noticed that the EFFPOR and RATIO
variables take on a continuos range of values. This
suggested that the ANN computational model should
be a nonlinear mapping algorithm. On the other hand,
the SWE and THICKM?X’S variables take on discrete
values. Hence, each value can be treated as a class.
Thus, the appropriate ANN model would here be a
classification algorithm. Second, using a different
ANN for each parameter allows us to determine and
use only those input variables that significantly affect
that parameter’s prdlction, l?ins!Iy,  sep~ate  ANNS
can always be combined, if necessary, in a hierarchical
manner to predict other reservoir parameters.

2.1 Input Data Scaling
Scaling ANN input data equalizes the importance of all
input variables and speeds up iearning. Raw data can
differ by several orders of magnitude, For example,
one input attribute may have vaiues  on the order of
0.00001 while another is around 100,000. The huger
number will quickly saturate the ANN processing
elements (nodes). Saturated nodes produce constant
output values corresponding to the maximum of their
dynamic range. The ANN weight update rule is
proportional to the derivative of the node’s activation
fbnction  at the c&rent  output value. For a saturated

node the derivative is almost zero and its weight stops
learning. Thus, in order to atleviate  this problem the
data should be scaled to match the node’s dynamic
range.

We used a linear mapping to scale the range of each
input variable to the nodes’ dynamic ranges. The input
variables’ ranges were determined from the full data
set. A linear activation timction  was used for the input
nodes; their dynamic ranges were chosen to be [0, 1]
or [-1, 1], depending on the particular ANN. Thus, all
data were mapped to the appropriate intervai.

2.2 Adjoint Operator Based Code
The adjoint operator method[3-4]  is used to study the
appropriate ANN architecture for this application,
This method is implemented in a computer code that
allows the user to chose and compare d~erent ANN
architectures for the problem at hand. Specifically,
our method views an ANN as a set of coupled
nonlinear differential eauations:

~.+ u. = .f.(~wn.cmum + In) (1)

where tin represents the output of the nti neuron; Un is

the derivative of Un with respect to time; and Tm is
the strength of the synaptic coupliig  tlom the n?’ to
the t?’ neuron. The sigrhoidal  fhnctions  ~n modulate
the neural responses; typically, ~(x)  = ~nh(x) . The

~m, is the connectivity matrix consisting of binary
numbers that indicate whether neuron n receives input
from neuron m. When Wm is 1 then neuron n is

connected to neuron m. The Wm,  matrix is an input
to the code, hence, the analyst can decide which
neurons shoulcl  be connected. Such an approach
allows one easily to select, test, and compare different
neural architectures by changing the values of this
matrix. 1,, is an external input to the r?’ neuron. The
goal in this code is to minimize the difference betw~n
the desired and actual output from the network for
each training sample, i.e., the error limction  is:

(2)

where dn is the desired output for nti neuron, and the
summation is perfo~ed fbr the output neurons only,
for ali K samples. The primary bottleneck in gradient
based iterative approaches for updating the values of
the matrix T arises tlom the cmt of evacuating the
derivatives 6’E / @Tm. This we overcome by using
adjoint operator techniques. Mathematical details are
given in [3-4], and we briefly summarize the essential
features in the sequel. Ultimately, the learning rule has
the familiar form:



.

C/L ~

Here, the superscript z indkates  the iteration number,
A is a constant step size, and v is the learning rate.
In the current code we have the option of keeping this
Ieaming  rate constant or changing its value adaptively
based upon the gradient. In the latter case, if the
gradient has a high (low) value, then the learning rate
is will be small (large). This is analogous to walking
down a bilk If the hill is very steep, one takes small
steps. On the other hand, if the slope is moderate, one
can run by ,@Mng big steps, Specifically, we ewtluate
t) by the following equation:

[)(94!7 ‘“3
v,= E (4)

This induces a Terminal Attractor[S] effect into the
dynamics of Eq.(3), where the “terminal” (non-
Lipschit.zian)  properties arise from the value of the
exponent selected, e.g., here - 1/3.

In order to calculate the value ofr9E/~Tfor  13q. (3),

in principle one needs to calculate ( 8E/c9u ). The
latter can be calculated by differentiating the neural
dynamiw in 13q. (l). This would lead .US to a system of
coupled Iinear equations, also known as forward
sensitivity equations, the right hand sides of which
depend on Tm. These equations have to be solved as
many times as there are parameters in the system, i.e.,
N2 wherein N is number of neurons in the system. An
akemative  approach exists, based upon the concept of
Adjoint Operators, that calculates the value of
8E 18?_’ indirectly, without calculating explicitly the

value  o f  c9E/8u. This approach reduces the
computational cost, and hence, the training time in a
filly conneoted network by O(N2)  [3-4].

This system allowed us to test various neural
archhectures  for estimating the different reservoir
parameters. Initially, several preliminary test cases
were executed for each parameter. The tests were
conducted on similar data (input and output set) with
different architectures constructed using the
connectivity matrix and the learning rate options,
Based upon the traidng  time needed compared to the
accuracy of , the results obtained for dflerent ANN
architectures, we concluded that a multilayer
f~fo~ard architecture with one or possibly two
hidden layers was sufficient for the application at hand.

3. RESULTS

One of the challenges of this application has been the
selection of the input attributes out of the set of 17
presented above, We believe that there are three
different approaches to the problem,

a)

b)

c)

Use the brute force approach, i.e., use all the
attributes as input, and let the network fi~re out
which ones are more important. This is the
approach we selected for water saturation
parameter estimation,
Use engbering  judgment for choosing the
important attributes and use them as input to the
network, Our effective porosity estimation is
based upon this approach.
Perform some preprocessing (similar to principal
component d-ysis)  on the data to find out which
of the attributes are dominant. This is the
approach we employed for the sand thickness
estimatio~  the results of which are presented
ehwwher~6].:

3.1 Estimating Effective Porosity
The effective porosity of a reservoir was estimated
flom seismic data. As stated above, the most cost-
effective architecture for this application was
determined’ to be a feed forward three layer network
operated in mapping mode. The input layer consisted
of 4 neurons. The following 4 attributes were used as
input: Depth O-Ofikeg  AVO-Slope, and P-Velocity.

The hidden layer involved 10 neuronq  the output layer
had only one neuron. To train and test the network,
we processed 2200 seismic samples. Approximately
200 data points were chosen randomly from this
dataset  for training the network. Tests with the trained
network were con-ducted on all 2200 samples.

PoromRy  Jbtimation

S8mple #

Figure 1. Desired and network predicted values of
effective porosity.
The above figure shows the actual porosity values,
versus those predicted by the network. The agreement
is outstanding. .

3.2 Water Saturation Estimation
For each trace; the value of the water saturation is
constant. Hence, the problem of estimating the water
saturation becomes a classification problem. Since the
input attributes vary dramatically over time, to classi$
the saturation level based upon raw attributes becomes
a hard, if not impossible problem. This suggested that
it would be advantageous to extract features
representative of each trace, To this end, we integrated



all the attributes over time for each trace. The
advantages of such an approach are rather remarkable.
First, the amount of data to be manipulated is reduced
dramatically (ilom  over S0,000 to about 150), i.e., one
sample per trace. Furthermore, one then needs only a
small network to do the classification, which in turn
results in a fast training time.

To train a network to classify water saturatio~  we
selected a three layer food forward network, The input
layer consisted of 12 inputs, i.e., Depth, AVO-Offset,
AVO-Slope,  GRBF(3),  Slope(3), Slope(4), Slope(7),
P&S Velocities, and Density, The hidden layer had 6

Sand water  aaiuration

ewe *

neurons, ~d Only one output neuron Wa$ U$d. The Fiwre 2. Desired ~d network pr~lct~  v~ues of
output values were allowed to range between -l and 1.
However, for classification purposes a threshold was
introduced at mxo,  i.e,, if the network output is less
than zero the saturation level was estimated to be at
approximately 40??0, while an output greater than zero
indkxlted  a saturation level of 100YoC

The training data consisted of 26 samples that were
randomly selected from the pool of 152 samples. All
data values were normalized to be between -1 and 1.
The network was tested on all 152 samples. Figure 2
shows the network output vs. the actual saturation
value. Instances where the network misclassified the

sad water saturation.

Mlmlasdtkdion  In $dturaliorr

o 40 so 120 160

Smrrple  #

saturation level are indicated in fighre 3. ~ m be Fi@re 3. Six ins~n~ that the network misclassified
observed fkom the figure, only 6 out of 152 levels the sand water saturation level.
were misclassified, i.e., a success rate of over 96°/0 was
achkmd. This result demonstrates a maior advance 5. REFERENCES
over estimates achieved to date with conventional 1
techniques.

4, CONCLUSIONS
2.

Our research at this stage appears to indicate that
ANNs can etliciently  be used to capture, based solely
on sensed seismic dat~ the same essential reservoir 3.
information as a detailed forward computational
model. Oil Industry representatives, part of an ongoing
DOE Advanced Computing Technology Initiative
project have reviewed our prelimhuwy  ANN results. It 4.
is their feeling that the proposed approach will help
demonstrate that ANNs produce surprisingly accurate
estimates of key reservoir parameters. They deemed 5.
this aspect of the experiment a success. However, the
real value of the ANN paradigm will be measured by 6.
their ability to handle the very @e scale datasets that
characterize field seismic exploration. We plan to
conduct such tests in the forthcoming year,
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