CSPs USE CHALLENGES

- Maturity
 - Cost: SLICC vs. JACS-Pak
 - Licensees with different materials, processes
 - Materials/Design
 - Continuous changes

- Availability
 - ICs in CSP format

- Reliability
 - Some data screening for packages
 - Some assembly reliability

- Supplier desire on reliability
 - Trust what they say!

CSPs RELIABILITY -1

- Applications
 - Low, Medium, and High I/Os

- Testing Modules
 - Daisy chain packages less critical
 - Test and burn-in socket availability for active die

- Design Guidelines CSP
 - Not available

- Standards
 - Construction, Pitches, Solder balls
CSPs RELIABILITY -2

- PWB Materials
 - Low to medium I/Os
 - Standard
 - High I/O
 - Microvia (build up) technology

- Process Requirements
 - Experience of using CSPs in SMT line
 - Mixed technology
 - Routability, Thermal mass, Cleaning, etc.
 - Underfill, etc.

CSPs RELIABILITY -3

- Reliability
 - Aerospace
 - Stringent requirements and long time
 - Commercial
 - Less stringent and short time

- Inspection
 - Hidden solders not inspectable

- Rework
 - Miniature package
 - Improved tool or modified procedures
 - Underfill
CSP Board Reliability Types

- CTE Absorbed CSP
 - Use of TAB
 - Solder joint low strain
 - No underfill
 - Reliability limit
 - TAB, material, etc. Data from manufacturer & user

- Extreme CTE Mismatch
 - Wafer level
 - Same as flip chip with slight improvement
 - Underfill requirement

- Ceramic package with rigid interposer
 - Non-wafer level
 - Improved reliability to CBGA version

CSP Reliability Prediction

W/O Consideration for Failure Mechanisms

<table>
<thead>
<tr>
<th></th>
<th>FR-4</th>
<th>Flex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>Motorola</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Gintec</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Data Source: R. Larmouth, SMI '97

FCOB/F

<table>
<thead>
<tr>
<th></th>
<th>FR-4</th>
<th>Flex</th>
</tr>
</thead>
<tbody>
<tr>
<td>55°C/125°C</td>
<td>77</td>
<td>178</td>
</tr>
</tbody>
</table>

(-55°C/125°C)
Demonstrate controls, quality, and reliability of Microtype Ball Grid Array interconnects & Support the development of industrial infrastructure in product assurance

- Inspection methodology development, especially for assembly level
- Optimal package type configuration
- Reliability characterization
 - Package type, I/O, and Environmental dependency
- Reworking techniques
Conclusions - BGA

- CBGA 625 I/Os were first to fail under different cycling ranges than
 - CBGA 361
 - SBGA 560, SBGA 352, OMPAC 352, and PBGA 256 when cycled to different temperature ranges

- PBGAs 313 I/O, depopulated full arrays, were first among the PBGAs to fail

- SBGA 352 with no solder balls under the die showed much higher cycles to failure than the PBGA 313

Conclusions - CSP

- CSPs alignment characteristics
 - Depend on package type, ball material, weight of package
 - 30 trial assemblies of 46 I/O, no defect

- Mixed Technology
 - Solder volume not optimum for leadless the most needed

- Trial TV Cycling Results
 - Low I/O wafer had poor quality
 - Double sided leadless was first to failure
Future Activities

- Package aging test results
- Complete 150 additional TVs with different PWB surface finishes
- Extensive thermal and mechanical evaluation of assemblies
- CSP Consortium- Mixed technology & active die including CSP, flip chip, BGA
- Guidelines documents
 - for BGA: http://www.ITRJ.org

Acknowledgments

NASA, Code Q, AE
AIP RTOPs
(Advanced Interconnect Program)

Also, in-kind contributions and cooperative efforts of

BGA CONSORTIUM

CSP CONSORTIUM

Consortium team members and others
Assessment of Strengths & Weaknesses for Major IC Packages

by
Reza Ghaffarian, Ph.D.
Jet Propulsion Laboratory
(818) 354-2059
Reza.Ghaffarian@JPL.NASA.Gov

Outline

- Package Miniaturization Trends
- BGA vs. QFP
- CSP
 - CSP vs. Flip Chip
 - Grid CSP vs. leads/no leads
 - Implementation challenges
- Thermal Cycling Fatigue
 - Optimum CTE mismatch
 - Reliability of BGA vs. QFP
 - Reliability of CSPs
- Conclusions
BGA vs QFP

- Advantages
 - Capable of high pin counts
 - Manufacturing robustness
 - Higher package densities
 - Faster circuitry speed than QFP
 - Better heat dissipation

- Challenges
 - Inspection
 - Multiple processes and double sided assemblies
 - Routing for high pin count
 - Rework, especially individual balls

CYCLES TO FAILURE DATA FOR PLASTIC PACKAGES

- SBGA 560 - Boeing Cycle
- PBGA 252 - Boeing Cycle
- SBGA 352 - Boeing Cycle
- PBGA 256 - Boeing Cycle
- SBGA 352 - Boeing Cycle
- PBGA 313 - Boeing Cycle
- PBGA 313 - Boeing Cycle
Chip Scale Package
Definition

- Near bare die size
 - 1.2 of die perimeter or 1.5 of area
- Industry definition!
 - Any package with pitch lower than previous version!

- Package purposes
 - Balls/leads compatibility with the PWB reflow
 - Aluminum pads on die are not reflow compatible
 - Die tight pitch redistribution to the PWB norm
 - Die protection from physical and alpha radiation
 - Thermal dissipation path and ease of testability

CSPs Concepts

- Die Tight Pitch
- Al Pad- Non Reflow

- Interposer
 - Polymer, Ceramic, Flex
 - Cu:Ni:Au Pad

- Wafer
 - Pitch limitation

- Norm Pitch for PWB
 - 0.5-1.27 mm
Chip Scale Package

Pros
- Near chip size
- Testability for KGD (Known Good Die)
- Ease of package handling
- Robust assembly process
 - (Grid array version)
- Die shrink or expand
- Standards
- Infrastructure
- Rework

Cons
- Limited package/assembly data availability
- Moisture sensitivity
- Thermal management
 - High I/Os
- Electrical performance
- Standards
- Routability
 - Microvia PWB for high I/Os
- Underfill?
- Reliability?
- Infrastructure?

CSPs

Grid Arrays
- C4 Wire Bond
 - High I/Os
 - Wire bond I/O Limitation
 - C4 ceramic, Wafer, Reliability?
 - Assembly Robustness
 - Self Alignment

Leads
- Leaded
- No Leads
 - Low I/Os
 - No Leads, Reliability?
 - Assembly Robustness?