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Abstract

A Jacobian formulation of the pressure gradient force for use

following coordinates is proposed. It can be used in conjuncti

n models with topography-

)n with any vertical co-

ordinate system and is easily implemented. Vertical variations in the pressure gradient

are expressed in terms of a vertical integral of the Jacobian of density and depth with

respect to the vertical computational coordinate. Finite difference approximations are

made on the density field, consistent with piecewise linear and continuous fields, and

accurate pressure gradients are obtained by vertical integrating the discrete Jacoblan

from sea surface.

Two discrete schemes are derived and examined in detail: the first using standard

centered differencing in the generalized vertical coordinate and the second using a verti-

cal weighting such that the finite differences are centered with respect to the Cartesian z

coordinate. Both schemes achieve second order accuracy for any vertical coordinate sys-

tem and are significantly more accurate than conventional schemes based on estimating

the pressure gradients by finite differencing a previously determined pressure field.

The standard Jacobian formulation is constructed to give exact pressure gradient

results, independent of the bottom topography, if the buoyancy field varies bllinearly

with horizontal position, x, and the generalized vertical coordinate, s, over each grid

cell. Similarly, the weighted Jacobian scheme is designed to achieve exact results, when

the buoyancy field varies bilinearly with z and z over each grid cell.

When horizontal resolution cannot be made fine enough to avoid hydrostatic incon-

sistency, errors can be substantially reduced by the choice of an appropriate vertical co-

ordinate. Tests with horizontally uniform, vertically varying, and with horizontally and

vertically varying buoyancy fields show that the standard Jacobian formulation achieves

superior results when the condition for hydrostatic consistency is satisfied, but when

coarse horizontal resolution causes this condition to be strongly violated, the weighted

Jacobian may give superior results.



1 Introduction

Topography-following coordinate systems are gaining popularity in numerical models because

they simplify aspects of the computations by mapping the varying topography into a reg-

ular domain, and they can be used to better resolve the surface and bottom layers of the

ocean, For these reasons, the sigma (a) coordinate system, which is the linear function of

bottom topography proposed by Phillips (1957) (see Appendix A), is now used widely in both

atmospheric and oceanic modeling.

Several generalized topography-following coordinate systems have recently been proposed

for improving resolution in the surface and bottom boundary layers of ocean models. Exam-

ples include the hybrid coordinate of Gerdes (1993) and the s-coordinate of Song and Haid-

vogel (1994). Numerous ocean circulation models have been developed based on topography-

following coordinates , including the Princeton Ocean Model (POM, Blumberg and Meller

1987), the Lament-l]oherty Ocean-Atmosphere Model (LOAM, Zebiak and Cane 1987), and

the S-Coordinate Rutgers University hIodel (SCRUM, Song and Haidvogel 1994). Appli-

cations have been made to a broad range of oceanographic problems, including estuarine,

coastal and large-scale ocean circulation problems (e.g., Oey et al. 1985; Glenn et al. 1996;

Span and Robinson 1990; Mellor and Ezer 1991).

Unfortunately, models using topography-following coordinates have suffered from errors in

the horizontal components of the pressure gradient over steep topography. The source of this

error is easily understood. For example, in rYcoordinates, the z-component of the pressure

gradient force is determined by the sum of two terms, i.e.,

)

dp ~p u 8p (3h

Zz=a i-mm’
(1.1)

where o s z/h. The first term on the right involves the variation of pressure along a constant

o-surface and the second involves the usual vertical variation of pressure. Near steep topog-

raphy these terms are large, comparable in magnitude, and typically opposite in sign. In such

cases, a small error in computing either term can result in a large error in the total horizon-

tal pressure gradient force. This problem was first realized by Smagorinsky et al. (1967).
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Later, Janjic (1977) and Mesinger (1981) pointed out an undesirable feature of the pressure

gradient calculation in a-coordinates which is often referred as “hydrostatic inconsistency”

(see section 3.1 for further discussion). More recently, Haney (1991) has focused the attention

of the ocean modeling community on the pressure gradient error associated with the use of

topography-following coordinates.

Steep topography plays an important role in ocean dynamics and particular care is required

to reduce the possibility of serious errors when using topography-following coordinates in

numerical models. Over the past three decades, meteorologists and oceanographers have put

a great deal of effort into the development of accurate and efllcient numerical methods for use

in such models. These efforts can be divided into the following four categories,

1) Vertical interpolation method:

This is a method of interpolatilig density back to z-levels to calculate the pressure gradient

force. Special care is required to avoid numerical errors which can cause serious problems since

integral properties are not guaranteed. One particular problem is that extrapolation is often

required when dealing with the highest and lowest levels of the model over steep topography.

In addition, this method would be very costly if the interpolation were required at every time

step and every grid point, part icularly if the a-levels were allowed to be time dependent as in

free surface models. Discussion of this method can be found in Mahrer (1984) and Fortunato

and Baptista (1996).

2) Subtract reference state:

Another technique is to formulate the pressure gradient force in terms of deviations from

a suitably chosen reference state ~(z) (Gary, 1973). This technique is simple to implement

and has proven useful in limited area ocean models, where the departure of the density from

the reference state is relatively small. However, it may be of less help in large-scale models or

in long-time integrations where the departures may not be small. References to other papers

discussing this method can be found in Corby et al. (1972) and Batteen (1988).

3) Higher order methods:



The use of higher order numerical schemes to estimate the pressure gradient term has also

been proposed to minimize errors. Beckmann and Haidvogel (1993) use the spectral method

and correct for truncation errors based on a Taylor series expansion of z-base functions, and

McCalpin (1992) introduces a fourth-order approximation for the horizontal derivatives of

pressure along a-levels (the first term on the right side of equation (1.1)). Such high order

methods should yield a more accurate pressure gradient force. However, this approach fails

to achieve significant improvement in some cases, such as the case of strongly stratified flow

reported by Beckmann and Haidvogel (1993).

4) Retaining integral properties:

Arakawa and Suarez (1983) and Arakawa and Konor (1996) emphasize the requirement

for the discrete formulation to retain important integral properties of the continuous equa-

tions. Since errors in the discrete equations cannot be eliminated completely, certain integral

properties should be satisfied to avoid the gradual development of large errors, perhaps due

to spurious sources and/or sinks of total mass, energy or vorticity. Based on the formulat-

ion (1. 1), they design some discrete schemes which conserve a variety of important integral

properties. Clearly, the best pressure gradient formulation should minimize truncation errors

while simultaneously retaining important integral properties.

From this brief review of the work associated with the a-coordinate system, it is clear that

there is great concern about the pressure gradient formulation. As more generalized vertical

coordinate models are developed (e.g., Zhu et al, 1992; Gerdes, 1993; Song and Haidvogel,

1994; Arakawa and Konor, 1996), two questions must be addressed: (1) Is there a generalized

pressure gradient formulation which is suitable for all such models, and (2) How well does any

particular formulation deal with the interaction of buoyancy variations and steep topography?

The primary goal of this study is to introduce a pressure gradient formulation which is

suitable for use with generalized topography-following coordinate systems. So far, most efforts

to improve the pressure gradient formulation have been based on (1.1) or similar expressions

where the gradient is applied after the pressure has been determined on a-surfaces. One
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example is the Arakawa and Suarez (1983) formulation for atmospheric modeling and its

numerous extensions in ocean modeling. In this paper, a novel feature of the new formulation

is that it is based on integrating a Jacobian of p and the vertical coordinate z with respect

to the vertical computational coordinate, i.e., it is based on the relation

%).=%)Z=,+;J”{%H2}’.’,(1.2)

where x,s are the generalized topography-following coordinates and z = ( is the position of

the free surface. Note that the gradient is applied on the density before the integration is done.

Equations (1.1) and (1.2) are analytically equivalent, but their discretized forms may differ.

Based on the new formulation, we design numerical schemes which minimize truncation errors

and retain some important integral properties of the continuous equations. Conservation of

momentum, total energy and bottom pressure torque are considered in Part II.

The secondary goals of this study are to examine the performance of the prcposed schemes

in ocean modeling applications and to provide guidance for their use. In this paper, we

examine the formulation of the pressure gradient force in two steps. First, we analytically

examine the truncation error and consider the implications for hydrostatic inconsistency.

Second, we examine the pressure gradient error in two sets of diagnostic calculations, the first

with realistic vertical variations, but horizontally uniform density and the second with both

vertical and horizontal variations in density. Results are compared with analytical solutions in

order to evaluate the effectiveness of the vertical weighting scheme and the use of non-uniform

vertical resolution. In a companion paper (Part H), we concentrate on discrete consistency and

the performance of the new formulation in realistic, prognostic ocean modeling applications.

2 The Pressure Gradient Formulation

In this section, we derive the Jacobian form of the pressure gradient force in both analytical

and discrete forms. Without loss of generality, we restrict attention to two dimensions, z and

z.
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2.1 Analytical formulation

Let z*, Z, t be the Cartesian coordinate system (or z-system) and let x,s, t be the gen-

eralized topography-following coordinate system (or s-system). A single-valued monotonic

relationship between z and .s is assumed such that

.’ = Z(z, s,i) –l<s <0.

Some particular examples, including Phillips’ (1957) a-system, Song and Haidvogel’s (1994)

s-system and the isopycnal coordinate system, are given in Appendix A.

With the hydrostatic approximation, and using p to represent the pressure divided by the

reference density, p., the horizontal pressure gradient in the x*-direction of the moment urn

equations is given by

2)== :5)Z=,-L%$Z,’” ,
(2.1)

where [ = [(x, y, t) is the sea surface elevation and b = —gp/po is the buoyancy. The )Z-

symbol emphasizes that the derivative is carried out with z held constant, otherwise with s

held constant. Using the chain rule we have

and factoring out dz/~s, then rearranging terms gives

ab

--) {

8S 82 ~b 82 ~b

.=% asax axas 1
—— ——— .

ax”
(2.2)

Substituting into equation (2. 1) we obtain the Jacobian form of the pressure gradient:

(2.3)

Clearly, vertical variations in the horizontal pressure gradient are simply given by an integral

of the Jacobian,

a’ Ob t)Z ~b
J(z, b) = ~% .—— .

ax as
(2.4)

It should be noted that the formulation in terms of a Jacobian is significant since it

is clearly independent of the particular form of the vertical coordinate. As examples, in
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Cartesian coordinates

and J(z, b) = I{% –

J(z, b) = --:&),.

s = z and J(z, b) = ~)~ = #)Z; in o-coordinates s = a = (z – [)/17

~ ~, where H = h + <; and in isopycnal coordinates s = p and

2.2 Discrete Formulation

The pressure gradient formulation discussed here can be used with essentially any numer-

ical scheme. We have chosen to make use of an Arakawa C-grid (Arakawa and Lamb 1977) in

the horizontal and a staggered grid (Grid 4 as in Leslie and Purser, 1992) in the vertical (Fig.

1). The staggered vertical grid, as reviewed by Leslie and Purser (1992), has the attractive

feature that the variables u, v and p are staggered relative to p and w (or i, the vertical

velocity in the s-coordinate) so that integral quadrature of the continuity and hydrostatic

equations is easily implemented using the ‘{natural” control volume approach.

To derive discrete schemes for the horizontal component of the pressure gradient, we will

use the following differencing and averaging operators:

6Zb = bi+l – bi ,

h.b = bk+l – bk ,

~’ = ~(bi + bi+l)

t’ = ;(bk + bk+~)

@ = abk + ~bk+l

6, = @ + 6;+1)

& = C& + pq+l,

(2.5)

where indices i and k represent discrete locations in the horizontal, z, and vertical, s, direc-

tions, respectively. The superscripts x and s indicate averaging in these directions, and the

subscript c indicates averaging over the local stencil to give a mean value, as illustrated in

Fig. 1. An overbar always corresponds to a simple centered mean. The weighting factors, CY

and /3 are included to allow us to choose the vertical level at which the Jacobian is evaluated.

A tilde is used to indicate an optimal choice for these coefficients (discussed below).
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If the Jacobian is computed at the stencil center with respect to z and S, the pressure

difference across the grid cell at the kth level can be obtained by integrating from the surface:

(2.6)

where 63 is the discrete form of J(z, b)dzds, which will be discussed next. PXC is the value

of the pressure difference at the surface, and k = 1 and K correspond to the bottom and

top levels, respectively. If a staggered vertical grid is used as shown in Fig. 1, the top level

k = h’ is a half level and the Jacobian is computed similarly to the other levels (see below),

but using appropriate surface boundary conditions to estimate derivatives at the upper level.

The Stanclard Jacobian

The simplest discrete analogue of the Jacobian is the second order central difference

scheme,

6J = 6.?”6.5s – d.zs&&’ . (2.7)

We refer to this scheme as the “standard Jacobian” since it uses standard centered differ-

ences in the s-coordinate system. It is noteworthy that this scheme corresponds to fitting the

bilinear form

b=bc+(~)c(z-zc)+(:)c(s-’c)+(%)c(x-zc)(’28)
over each grid cell of the model, resulting in a well defined, continuous approximation to the

density field over the entire domain. In practise, the finite difference approximations for s and

its derivatives are also consistent with s being consistently represented by a bilinear function

of x and z over each grid cell (see (2.16)). Thus, if the density could actually be represented

by a bilinear function of x and s over each grid cell, then each term in (2.7), and hence also ‘

the pressure gradient results, would be exact.

This scheme can be easily implemented in

of the vertical coordinate. In the case of the

it leads to the usual Cartesian formulation.

any numerical model with any desired stretching

z-system, the second term in (2.7) vanishes and

In the case of o-coordinates, it gives a scheme
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equivalent to that discussed by Mellor et al. (1994) with a uniform u grid. In the case of

an isopycnal-s ystem, the first term in (2.7) vanishes and it gives the pressure gradients on

isopycnal surfaces.

A bilinear approximation in z and s is probably near optimal for fitting buoyancy vari-

ations associated with plumes on continental slopes, but this structure will not be optimal

in all cases. Indeed, gravity and rotational effects combine to cause most features (in par-

ticular, those associated with eddies and large scale currents) in the ocean to have a small

vertical to horizontal aspect ratio. Hence, even after removing the domain averaged vertical

buoyancy profile most of the remaining buoyancy anomalies will be approximately aligned

with the horizontal. To better deal with such buoyancy anomalies, we now consider an alter-

native formulation designed to give improved results when the buoyancy variations are well

approximated by a bilinear function of z and z over each grid cell.

The Weighted Jacobian

In this subsection, we determine the optimal choice for the weighting factor a for the

particular case

Before doing so

manipulations.

when the buoyancy varies bilinearly with z and the depth coordinate, z.

we record the following relationships since they prove useful in the algebraic

In general, the vertically weighted Jacobian is given by:

(2.9)

(2.10)
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where a and /3 (= 1 — o) are the weighting factors. The standard scheme, centered in the

stretched coordinate s, corresponds to a = ~. We now determine a such that exact pressure

difference results are obtained for a buoyancy disturbance of the general form b(z, .z) = &(z)+

bl (x),z. In this case, the exact pressure difference at depth z is given by:

K

Pxk = PXC – ~ [&b. + Zc&bl] 6.7’ , (2.11)
k’=k

where ZC == (ZI + 22 + 23 + 24)/4, and the Zi are the z-levels of the corners of the control

volume.

Note that the vertical variation in the pressure difference across a cell depends only on

the densities along the side-walls of the column considered, and not on the interior values.

Thus, pressure differences will depend on the differences in b. and bl across the cell and not on

details of the horizontal buoyancy variations within the cell, exactly as for the usual Cartesian

coordinate system.

First, consider b = be(z). In this case, J~bo(x) = O, and

which gives the exact pressure difference as required in (2.1 1). Note that this places no

restriction on the weighting factor a,

Now consider b = bl(x)z, In this case,

which, after some straightforward algebra, may be rewritten as

[ 1c$j=C$,ZZ2C–&5@5z2J$bl , (2.12)
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For consistency with (2.1 1), we require that

(2.13)

Clearly this condition places no restriction on the value of Q if 6Zb1 E O. For a buoyancy

field which varies linearly with z, but is independent of horizontal position, pressure gradients

will be accurately represented for any weighting factor, including the uniform weighting,

~ = ~ = ~. Thus, there is no obvious advantage of any particular choice of weighting for the

case of a horizontally uniform buoyancy field, which is often used as a test case.

Equation (2. 13) shows that our weighting is determined to properly allow for horizontal

changes in the vertical variations of the buoyancy field. Using this condition and the relations

(2.5), some algebra gives

where

(2.14)

(2.15)

Clearly, our weighted Jacobian formulation corresponds to evaluation of the Jacobian at

X = XCand S = ask + ~sk+l = (Sk + sk+l)/2 + ~(sk+l – Sk).

Below, we show that this corresponds to the position x = ZC, z = ~. in the t, z coordinate

system, i.e., the Jacobian is centered in the z-coordinate system. First, we express s in terms

of the Cartesian coordinates z and z, as

Note that the point (zC, %,) in x ,z-space is equivalent to the point (XC,SC) in x, s-space.

Defining si such that (xi, si) corresponds to the point (xi, zi), we have the relations

‘1= “-(~)c:+(%)c(zl-’c)-( %)c:(zl-zc)
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‘2= ‘C+(ac:+(wz’-zc’+(=)c$’z’-’c’
‘3= “-(w+(%’z’-zc’-(ac:(’c-’c’
‘4= ‘C+($%$+(ac’z’-zc’+(%)c:(z’-zc)‘217)

Averaging these equations gives

()

J.z’dx 82s
Sc=s ————————

4 8X8” .
(2.18)

where
.$1+s’+s’+s4

~=-
4“

(2.19)

Now, from (2.15) we have

()CLzs($x ()’s— .—— ——
4(5s 8X82 ~ ‘

(2.20)

so that (2.18) can be rewritten as

Sc = 3+@s . (2.21)

That is, ~ gives the fractional change in s required to shift from the mid-point in s-space

to the mid-point in z-space. Since the weighted Jacobian corresponds to evaluation of the

Jacobian at s = SC(i.e., z = z.), this scheme is effectively centered in z-space rather than in

s-space, as for the standard Jacobian. This is clearly consistent with the fact that the scheme

has been designed to give exact results when the buoyancy field varies linearly with z (rather

than s) over each grid cell. This is the only difference between the standard and weighted

Jacobian formulations.

Note that the choice of ~ given by (2.15) is independent of the buoyancy field: if the rigid

lid approximation is made, it only needs to be calculated at the beginning of the model run.

Even with a free surface, the rigid lid approximation to a might be used in some applications
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wit h little loss of accuracy. Also note that for any uniform grid of parallelograms (in eluding

rectangles), dZ(J$z) = O, so a = ~ in this case, and the ‘{weighted Jacobian” reduces to the

‘Lstandard Jacobian’), as expected. The two schemes differ only in the case of a non-uniform

grid.

3 Analytical Error Analysis

Haney (1991 ) systematically analyzes the errors associated with computing the pressure gra-

dient force over steep topography in a-coordinate ocean models. His analysis is based on the

fact that a pressure gradient scheme should not generate any force if the surface pressure is

constant and isopycnals are horizontal, i.e., b = b(z). In this case, any nonzero value com-

puted by the scheme is due to truncation error. In practice, a reference state h(z) is often

removed from the buoyancy field and only the perturbation b’ = b(z, y, z, t) — ~(z) is used in

computing the pressure gradient. The perturbation field b’(z, y, z, i) clearly does not satisfy

the above condition of horizontal uniformity. Further, we have already pointed out that the

weighting factor in the weighted Jacobian scheme is determined by horizontal variations in

the vertical stratification, and this effect is clearly not addressed through the consideration

of a horizontally uniform buoyancy field. Nevertheless, this special case is of interest since

large scale buoyancy variations will generally result in there being vertical structure in the

horizontal mean buoyancy perturbation over the local stencil. Further, results for this spe-

cial case help to reveal potential problems with topography-following coordinate systems and

particular advantages of different numerical schemes.

Haney discusses four aspects of the errors that occur in the conventional a-coordinate

formulation of (1.1):

●

●

Errors associated with a buoyancy field which is independent of z. In this case, he shows

that the numerical form commonly used is exact.

Errors associated with isopycnal perturbations which are a linear function of z, i.e.,
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b’ = b.+ Njz. For this case, he finds that the error is proportional to

●

●

“=(32-X32’””~
This error is zero only for a uniform vertical grid.

The (s~called) hydrostatic inconsistency error.

Errors associated with the buoyancy profiles corresponding to the first three baroclinic

Rossby modes.

The first two kinds of disturbance errors should vanish exactly in models of second order

accuracy. Unfortunately, for the case of non-uniform vertical grid spacing the accuracy of the

scheme will typically reduce to first order in the grid spacing (Chen and Beardsley, 1995).

As noted by Haney (1991), if the sigma grid spacing is smaller near the surface and larger at

depth, &kwill be negative in the upper ocean and positive in the deep ocean. The resulting

erroneous pressure gradient will tend to produce a geostrophic flow along the isobaths with

shallow water to the right in the upper layers and to the left in the lower layers.

We know from the previous section (see (2.13) and the associated discussion) that the

new formulations introduced here give exact representations of the pressure gradient force

if the buoyancy is horizontally uniform and varies linearly with z in the vertical direction.

In addition, by choosing s to be an appropriately stretched coordinate, surface and bottom

layers can be well resolved without introducing non-uniform s-levels, so second order accuracy

in the vertical grid spacing is retained. This is an important advantage of using the present

formulation in combination with generalized s-coordinates. We next analytically consider

truncation errors and hydrostatic inconsistency.

Truncation Errors and Hydrostatic Inconsistency

Researchers have known about the so-called hydrostatic inconsistency associated with the

o-coordinate system for a long time. In meteorology, Rouseau and Pham (1971), Janjic

(1977), and Mesinger (1982) discuss problems associated with violation of the condition

(3.1)
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If this inequality is not satisfied, then an error occurs in the estimation of the horizontal

pressure gradient which does not tend to zero as the vertical resolution is increased, a problem

which is commonly referred to as hydrostatic inconsistency. Haney (1991) investigates the

problem of hydrostatic inconsistency in some detail within an oceanographic context.

Mellor, et al. (1994) emphasize that the pressure gradient error in their formulation is not

numerically divergent: instead, it is proportional to the difference between two terms which

decrease as the square of the vertical and horizontal grid element sizes, respectively. Their

equation (7) clearly reveals the source of the error minimum as a function of vertical resolution,
.

which Haney (1991 ) discusses. This minimum is the result of cancellation of truncation errors

associated with finite vertical and horizontal resolutions: neither of these errors actually

increases beyond the point where the minimum error occurs.

From the derivations given in the previous section, we know that the standard formulation

gives exact results if the buoyancy varies bilinearly with z and s over each grid cell. If the

buoyancy field actually varies linearly with z, but nonlinearly with s, then a bilinear function

of x and s over each grid cell becomes a better approximation to the real buoyancy field as the

vertical rescdution is improved, and we expect this scheme to converge to the correct answer

as the vertical resolution is improved. Thus, for these special buoyancy profiles, the standard

Jacobian formulation has a clear advantage. On the other hand, if the real buoyancy field

varies linearly with x and nonlinearly with z, then increasing the vertical resolution in the

s-coordinate system will not necessarily give improved results using either the standard or

weighted Jacobian formulations. This is simply a consequence of the fact that reducing the

increment in s will not significantly reduce the range of z values within a cell if the cell is

near the bottom over steep bottom topography.

To give quantitative results on hydrostatic inconsistency, we now derive the truncation

errors associated with our two schemes for the special case of a buoyancy field which is a

quadratic function of z alone. For the special case of horizontal isopycnals, any vertical

variation in the pressure difference across a cell must be due to truncation error. Expanding

14



b(z) arouncl an arbitrary vertical level, zC, gives

‘(’)=bc+(~)c’’-zc’+(%)c[z-:]2+highe”order’e’32)
and inserting this expression into the Jacobian scheme, we obtain (after considerable algebra)

the truncation error in the horizontal pressure difference change over the vertical extent of a

single cell:

~~~o.= {+J.(6.Z)[(6.7z)2-(J.Zs)2]+-~6.Zs[d.Z,+~6~Zi]~ +higher order terms . ‘M )c

(3.3)

For the standard Jacobian, y = O and the second term vanishes. Neglecting the higher order

terms, the truncation error becomes

()E&J= :6.(J.Z) [(J,Z’),– (J.P)’] g .
c

(3.4)

For our weighted Jacobian, ~ is given by (2.14), and (3.3) reduces to

()

~2b
E~rJ = $&(&z) (&z’)2 ~ . (3.5)

c

As expected, in either case the truncation error vanishes if b is solely a linear function of

z. The weighted Jacobian offers no obvious advantage in this case. However, if b(z) varies

nonlinearly over the depth of a cell, the two schemes have distinctly different properties.

For the standard Jacobian (~ = O), (3.4) is the generalization to arbitrary vertical coordi-

nate of equation (7) in Mellor et al. (1994). For the special case of a-coordinates, 6~zZ = h~o

and 6.2 = 06x~h/~x and our formula gives their equation. It is also clear that the general-

ization of the hydrostatic consistency condition (3.1) is

which is reputed to be required to obtain optimal accuracy with topography following coor-

dinates. In fact, from (3.4), we see that optimal accuracy is actually achieved at the point

of equality, i.e., when equality is satisfied in (3.6). This error minimum for the standard

Jacobian formulation is easily explained. If the vertical resolution is further reduced without
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reducing the horizontal resolution, then interpolation in z or extrapolation in z is required

to estimate the horizontal buoyancy difference across the grid cell. However, values slightly

exceeding the point of equality will not be much worse than slightly smaller values. This is

true for any s-coordinate system, including a-coordinates.

From (3.5) we see that, for the weighted Jacobian, the term with (6.2s)2 is canceled from

the truncation error. Thus, for a buoyancy profile that is quadratic in the vertical, the error

converges monotonically to zero as the number of vertical levels increases (i.e., with decreasing

c$~~”= i6cJ in the a-system). Note that the error cancellation which the standard Jacobian

benefits from does not benefit the weighted Jacobian because it requires the density difference

at the mean z level rather than at the mean s level at which the buoyancy difference is known

when the opposite corners of a cell are at the same z level.

To illustrate the effect on velocity of the differences between the standard and weighted

Jacobian schemes, we consider a density perturbation field which varies quadratically in the

vertical. Thus, we consider a density perturbation of the form

()
2

z + hmaz
p(z) = ~ .

maz

The bottom pressure gradient error obtained with the

formly spaced o-system can be estimated by summing up

(3.7)

standard Jacobian using the uni-

(3.4) over the depth of the water

column. The corresponding geostrophic current error, accumulated over the full depth of the

water column, is given by:

--{ L(*)2(;+_!_+_L)}~= g 8E

‘ jp. 100 K’ (3.8)

where e = JZh/Jx is the bottom slope and K is the number of vertical levels. It can be seen

that the second term decreases with JX2, but does not converge to zero with increasing K.

For the weighted Jacobian scheme, the term proportional to JZ2 is completely absent. Figure

2 shows the results for h = 2000rn, e = 0.05 and horizontal resolutions of C$Z= 10km and

6X = 20krn. The standard Jacobian scheme (solid lines) outperforms the weighted Jacobian

scheme when the “hydrostatic consistency” condition is satisfied, but performs less well when
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the condition is significantly violated. For large scale problems, the horizontal resolution is

generally decreased for practical reasons and the condition for hydrostatic consistency may

be strongly violated. In this case, the weighted Jacobian may give superior results to the

standard Jacobian, with the gain in accuracy increasing as (c$zh/h)2.

Comparison of Figs. 2a and 2b confirms that the error associated with the standard

Jacobian scheme increases like (JZh/h)2 m (Jz)2 when the hydrostatic consistency condition

is violated, while the error in the weighted Jacobian scheme (dashed lines) converges to zero

with increasing K.

We emphasize that the standard Jacobian benefits from there being no need for vertical

interpolation when the upper corner on one side of a cell is at the same z-level as the lower

corner on the other side of the cell. The weighted Jacobian does not benefit from this cancell-

ationbecause this configuration gives the density difference at the mid-level in s-space whereas

the weighted Jacobian requires this difference at the mid-level in z-space. Thus, the standard

Jacobian will be more accurate when equality is approximately satisfied in (3.6), This might,

for example, be used to advantage in numerical studies of plumes over steep bottom topogra-

phy. However, models often strongly violate this condition. As pointed out by Mellor et al.

(1994), with 20 evenly spaced a-levels in the vertical, this condition requires Jzh/h <0.05

which is a very severe constraint in regions of steep topography. The weighted Jacobian is

interesting with regard to this point since, for a horizontally uniform buoyancy field with

quadratic dependence on Z, the hydrostatic consistency problem is eliminated. That is, when

the buoyancy field is horizontally uniform and varies as a quadratic function of z over the full

vertical extent of each grid cell, the model accuracy can be improved by simply increasing the

vertical resolution without concern about hydrostatic inconsistency.
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4 Diagnostic Examples

To quantitatively examine truncation errors and hydrostatic inconsistency, we consider some

specific diagnostic examples. In these examples, we first follow Haney and examine buoyancy

variations which would be associated with the first three vertical Rossby wave modes. We

then consider a diagnostic example which considers the errors associated with perturbations

which include both horizontal and vertical variations in the buoyancy field.

4.1 Modal buoyancy profiles

To examine the error associated with realistic vertical variations in the buoyancy field, we

consider the local buoyancy perturbations due to the first three Rossby wave modes in the

presence of a prescribed mean buoyancy frequency. Note that these results simply consider

the effect of different vertical variations in the buoyancy field: isopycnals are still horizontal

so the analytical solution has no flow.

The vertical modes are first determined by solving the eigenvalue problem:

(4.1)

with boundary conditions

T’(0) = “’(–m) = O . (4.2)

The analytical solution is known for N(z) = 0.01 x ezlhs s-l, where, hs is a reference depth

and q is a dimensionless constant. The eigenfunctions and eigenvalues are

Tm = (–l)m cos(rnnezihs) (“K) (4.3)

and

()

2

Am= F . (4.4)
s

We consider results corresponding to h, = 400 m, h = 2000 m and q = 100. The buoyancy

frequency and the first three modes are plotted in Fig. 3 and are similar to the baroclinic

Rossby modes calculated by Rienecker et al. (1987) for the west coast of North America,
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except for the surface mixed layers. These modes have been used by Rieneckeret al. to

decompose and analyze dynamic variables. For example, the pressure can be expanded as

The barotropic mode,

the region off Oregon,

P = 5 P?n(x, !/,t)Tin(z) .
m=o

poTo, accounts for about 919’o of the variance in the pressure field for

and the first three baroclinic modes account for about 770, 1.2%, and

0.5%, respectively. These modes are thus relevant to the vertical structure of oceanic flows

and will be used to investigate the pressure gradient errors. It should be pointed out that

the profiles used here are slightly different from those used by Haney (1991), but there is

no significant difference in numerical errors if Haney’s profiles are used. We use the present

profiles because the existence of analytical solutions offers some obvious convenience.

Let bin(z) = agTm (z) represent the buoyancy disturbances, where a = 2.5 x 10-4 K-l is

the thermal expansion coefficient and g is the acceleration due to gravity. TO compute the

discrete pressure gradient force, we use a typical continental slope of 0.05 over an average

depth of 2000 m. Since the actual pressure gradient force is known to be zero in this case,

any nonzero value computed by the difference scheme is due to truncation error. The false

pressure gradient can be expressed as an erroneous geostrophic current parallel to the isobaths,

V. = PX~/jJz, where j = 10-4s-1 is the Coriolis parameter.

Case A: No Hydrostatic Inconsistency (Jz = 1 km)

We first consider results obtained with 4X = 1 km so that potential problems associated

with hydrostatic inconsistency are avoided. The errors corresponding to the first three Ilossby

modes are shown in Fig. 4 for three different vertical resolutions: K = 10, 20, and 30. In each

case, results are shown for the standard Jacobian scheme with uniformly spaced a-coordinate

(solid lines) and with the s-coordinate system introduced by Song and Haidvogel (1994),

with O = 3 to improve the resolution in the region of strong vertical stratification (dashed

lines). The results corresponding to the uniformly spaced a-coordinate system were obtained

by taking 0 = O in the latter s-coordinate system. The errors obtained with O = O using

the new pressure gradient formulation are about half those computed by Haney based on the
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standard formulation. This improvement is significant, but not particularly drarnat ic. Use

of the weighted Jacobian scheme (results not shown) does not significantly reduce the errors

for these calculations. This is not unexpected since our analytical results have suggested that

the weighted Jacobian gives improved performance when there are horizontal variations in

the vertical stratification in combination with a non-uniform vertical grid or when there are

problems with hydrostatic consistency, neither of which are present in this example.

As noted above, a major advantage of using generalized s-coordinates is that non-uniform

vertical grids can be used without giving up the second order accuracy of the numerical

scheme. The part icular s-coordinate system discussed by Song and Haidvogel (1994) provides

an example of how this may be used to advantage. This coordinate system includes three

parameters, hC, b and 0, which can be used to adjust the vertical variations in the vertical

resolution. O = Ocorresponds to the uniformly spaced o-coordinate system and larger values of

6 correspond to larger variations in the vertical resolution over the depth of the water column.

hc and b have no effect when O = O, but for nonzero 0, hc determines a vertical position above

which the vertical resolution is nearly constant and maximized, and the value of b determines

where increased resolution should be concentrated. hc is always less than or equal to the

minimum water depth within the region being modeled. Choosing b = O maximizes the

resolution in the upper portion of the water column and b = 1 gives similar resolution near

the surface and bottom. At the surface, the s-coordinate system nearly coincides with the

z-coordinate system (s = O corresponds to the position of the free surface), so problems with

the pressure gradient error are reduced in this region.

Since we know that our discretization scheme is well suited to the case where the buoyancy

varies linearly over each individual grid cell, it is likely that results can be improved by

choosing h., b and O such that IV(z) is roughly constant over each grid cell. We thus set

b = O and hc = 400 m to force any increase in resolution to be concentrated in the near

surface region where N(z) varies most rapidly. We then experiment to determine that O = 3

gives a reasonable representation of IV(z) over the entire water column. With this choice of

parameters, we find that with the standard Jacobian formulation the error is about a factor
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of 10 smaller than that in

(dashed lines in Fig. 4).

formulation.

the cr-coordinate system for each mode and for each choice of K

Results are not significantly different for the weighted Jacobian

Clearly, an objective procedure could be developed to determine optimal parameter values

in any s-coordinate system based on satisfying specific resolution criterion. The present

example suggests that this may be worthwhile, but it has not yet been investigated. The

main point of the present exercise is that errors can be dramatically reduced through an

appropriate choice of the coordinate system, and by using an appropriately stretched grid,

there need not be any reduction in the order of accuracy.

Case B: With Hydrostatic Inconsistency (6z = 10 km)

Next we consider examples which are intended to confirm our analytical predictions re-

garding hydrostatic inconsistency and to further examine its qualitative effects. We again

follow Haney (1991 ) and consider a specific example in which the horizontal and vertical res-

olutions violate the condition (3.1) or (3.6). In particular, we consider horizontal grids with

6X = 10 km, as opposed to the 1 km grid used above. With this value of 6x, the consistency

condition is violated for K’ > 12 with uniformly spaced o-levels.

The largest truncation errors in (the water column are shown in Fig. 5 as a function of

K for the three different Rossby wave modes, using three different schemes: (a) the standard

Jacobian in the a-system; (b) the standard Jacobian in the s-system of Song and Haidvogel

(1994) with h. = 1000rn and optimal O(K) by taking advantage of the error cancellation

discussed in the previous section (see below); (c) the weighted Jacobian in the s-system with

6 = 3. In each case, the errors increase with mode number as expected. The errors in Fig. 5(a)

corresponding to the standard Jacobian in the o-system are similar to those presented in Fig.

7 of Haney (1991). Consistent with Haney’s results, the error increases for K > 10. These

results are similar to the results shown in Fig. 2 for a quadratic vertical profile and further

confirm that the error minimum which has been associated with the hydrostatic consistency

boundary is actually due to cancellation of the truncation errors due to finite horizontal and
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vertical resolutions.

Results obtained with the standard Jacobian scheme in the s-system with optimal O (Fig.

5(b)) show that errors are reduced substantially for this typical choice based on accurately

representing the vertical stratification. In the present case, the improved representation of

vertical stratification is accompanied by reduced hydrostatic inconsistency at depth due to

coarser resolution there. Fig. 5(b) shows that, at least in some cases, problems with hydro-

static inconsistency can be substantially reduced with the standard Jacobian scheme if the

vertical coordinate system is carefully chosen. In this case, the error continues to decrease

with increasing K because the value of O has been chosen such that the largest truncation

errors associated with finite horizontal and vertical resolution cancel. That is, we have chosen

O such that equality in (3.6) is satisfied at the bottom. For b = O in the s-coordinate system

of Song and Haidvogel (1994) (see Appendix A), this gives:

++&. (4.5)

In Fig. 5(b), we have used hz = 0.05, 6X = 10krn, h = 2000nz, and h= = 1000 m, which gives

6 = 0.5K – 1, and we see that this choice does indeed substantially reduce the model error.

However, from Fig. 5(c) we see that the minimum error as a function of K is not present,

as expected from our analytical considerations. Comparing Fig. 5(b) and 5(c), reveals that

the errors are actually increased in the weighted Jacobian scheme. This is a consequence of

the error cancellation which the standard Jacobian formulation benefits from, but the weighted

Jacobian formulation does not. We also note, in contrast to the results of Fig. 2, that the

errors in the weighted Jacobian formulation do not continue to decrease as K is increased.

This is a reflection of the fact that hydrostatic inconsistency is only eliminated for buoyancy

profiles which vary quadratically with z over the full depth range of each grid cell. Clearly,

these baroclinic modal buoyancy profiles do not satisfy this condition.

The results shown in Fig. 5 seem to suggest that the standard Jacobian formulation has

a clear advantage over the weighted Jacobian formulation. This suggestion is somewhat mis-

leading. As we noted following (2.13) the weighting used in the weighted Jacobian formulation
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is determined by the combined effect of horizontal and vertical variations in the buoyancy

field. Since the above example does not include horizontal variations in the buoyancy field,

the possible advantage of the weighted Jacobian formulation is not considered by these tests.

We now consider an example which includes both horizontal and vertical buoyancy variations

in order to test the formulations under somewhat more realistic conditions.

4.2 Coastal Front

In the above two subsections, we have examined truncation errors due to isopycnal distur-

bances which are horizontally uniform, i.e., b is a function of z, only. In reality, ocean flows

can be strongly stratified in both horizontal and vertical directions. Such cases are often seen

in coastal oceans where the combination of complex coastal geometry and steep topography

offer great challenges for numerical modelers.

Here, we consider a case with both vertical and horizontal variations in density, similar

to the shelf-break front in the Middle Atlantic Bight (MAB). During the winter, the water

column over the shelf and the upper slope is nearly linearly stratified in both temperature and

salinity. However, a persistent, sharp shelf-break front is found near the shelf edge where the

fresher, colder shelf water meets the saltier, warmer slope water. The accurate computation

of the pressure gradient force over such a region of steep topography is potentially important

for the study of frontal dynamics in the coastal ocean. Following Chapman and Gawarkiewicz

(1993), the density field is approximated by:

p(z, z) =24 + {2.312 – 0.175(5!’ – 10.5)+ 0.779(S – 34)} X Z(z) (4.6)

where

Z(z) ={l-e;}j
s

and the surface temperature and salinity are given by

T = 10.5+ 2.5 tanh[(x - L)/20] (“C)

S = 34+ tanh[(x – L)/20] (psu).
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Thecorresponding density field isplotted in Fig. 6a, superimposed onthe model topography

from Gawarkiewicz and Chapman (1992). The topography includes a gently sloping conti-

nental shelf from 50 m depth at the coast to about 180 m depth at the shelfbreak, an adjacent

steeply sloping region extending offshore to about 2000 m depth with a slope of 370, and an

abyssal plain. The widths of the shelf, slope and abyssal plain are 50 km, 50 km, and 100

km, respectively. The distance of the front from the coast is L = 50 km, the depth parameter

h. = 150 m, and c = 0.01 determines the vertical gradient in the density field. Even in this

case, where horizontal gradients are strong, removing the reference state is still worthwhile

and this has been done in the examples presented below.

The exact pressure gradient force can be calculated analytically and the geostrophic es-

timate of the associated current, relative to the surface, is plotted in Fig. 6b. While this

example does not consider the dynamics which determine the surface pressure field, it is well-

-suited to revealing problems with the representation of the pressure gradient force associated.

with the combination of horizontal and vertical variations in the buoyancy field. The errors

in the geost rophic current estimated with the standard Jacobian and O = 3 are plotted in Fig.

6C and the corresponding errors obtained with the same value of 0, but using the weighted

Jacobian scheme are plotted in Fig. 6d. The error is small in Fig. 6C ( ~ 0.00024ms-l ), but

the weighted Jacobian scheme (Fig. 6d) gives the exact pressure gradient force even over this

steep topography. This is as expected since our vertical weighting factor was chosen to give

zero error for a density field which varies linearly with z.

Of course, we expect some error to be introduced in the weighted Jacobian scheme if the

vertical variation in density is not linear. To investigate the errors associated with horizontal

variations in combination with nonlinear vertical density profiles, we now consider results for

a density profile which varies

of the form (4.6), but with

exponentially with z. In particular, we consider a density field

Z(z) = ezp(–e~) ,
s

(4.7)

where e = 0.04. Results corresponding to this density profile, with all other parameters

exactly as in Fig. 6 are shown in Fig. 7. Maximum errors are increased substantially to
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O.OO1ms-l and 0.00009ms-l for the standard and weighted Jacobian schemes, respectively.

However, eachof these errors remains small in comparison with the maximum current speed

which is approximately 0.55rns-l (Fig. 7b). The effect of increasing the horizontal grid size

from 5kmto20km isshown in Fig. 8. For each formulation, themaximum errors areincreased

byabout afactor of 10, comparable with theexpected factor of16 based on theschemebeing

second order accuratein the grid resolution. Evenat this coarse resolution, the errors would

be tolerablefor most applications: the maximum error isabout 2.6% ofthe maximumcurrent

for the standard Jacobian and about O.l%for the weighted Jacobian.

5 Summary and Conclusions

The pressure gradient formulation remains one of the most important issues in the design

of numerical models with topography-following coordinate systems In this paper, we have

introduced a generalized method to compute the pressure gradient force based on integrating

the Jacobian of density and vertical coordinate. The Jacobian formulation allows us to design

a scheme which can be used with any vertical coordinate system. Two different schemes are

considered in some detail: the standard Jacobian scheme which is exact for any topography

provided the buoyancy field varies bilinearly with x and s over each grid cell; and the weighted

Jacobian scheme which is exact for any topography provided the buoyancy field varies bilin-

early with x and z over each grid cell. Both schemes retain second order accuracy in the

presence of horizontal and vertical variations in both the density field and the vertical grid

spacing.

For each of the schemes discussed here, finite differences are applied to the density field to

estimate horizontal density gradients prior to integrating to determine the horizontal pressure

gradients. Since the density is always approximated by a linear function of s, the pressure

field is consistently approximated by a quadratic in the vertical coordinate over each grid cell.

This contrasts with the conventional approach in which the density field is first integrated

to determine the pressure which is then finite difference to estimate horizontal pressure
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gradients. In this case, the pressure is effectively quadratic in the vertical coordinate over

each grid cell since it is obtained by integrating a linear function of density, but subsequent

finite differences of the pressure field may not properly account for this quadratic dependence.

By differentiating the density prior to integrating, the present numerical schemes avoid this

inconsistency in a natural way.

The truncation error is examined analytically for horizontally uniform isopycnal distur-

bances, ancl quantitatively for particular horizontally and vertically varying isopycnal distur-

bances. The accuracy of the Jacobian schemes are improved significantly over conventional

formulations based on finite differencing the pressure field. Consistent with the results of

Mellor et al. (1994), we find that, for a horizontally uniform buoyancy field which varies

quadratically in the vertical, the standard Jacobian scheme converges to the exact solution

with the square of the horizontal and vertical grid sizes. In this case, we find that the weighted

Jacobian converges quadratically with the vertical grid size, independent of the horizontal grid

spacing. However, it should be emphasized that the latter result holds only for a buoyancy

field which is horizontally uniform and varies quadratically with z over the full vertical extent

of each grid cell.

A generalized hydrostatic consistency condition is derived which applies for an arbitrary s-

coordinate system when the standard Jacobian formulation is used. Unfortunately, violation

of the hydrostatic consistency condition may occur in some cases, particularly, in large-scale

modeling problems. If the resolution can be chosen such that the hydrostatic consistency

condition is not violated, then the errors associated with the standard Jacobian scheme can

be reduced by choosing the coordinate system such that errors due to finite horizontal and

vertical resolutions cancel. This corresponds to the situation in which the vertical integral

error terms in (3.3) vanishes.

The weighted Jacobian scheme was developed in order to improve the accuracy of pressure

gradients when density variations are better approximated by a bilinear function of z and z

than by a similar function of z and s. We expect that this will often be the case, even
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after the horizontally averaged density field has been removed, since the vertical to horizontal

aspect ratio is small for many oceanic phenomena. Consideration of the truncation error

for this scheme has shown that the optimal choice of the weighting parameter to account for

horizontal variations in the stratification also removes the problem of hydrostatic inconsistency

for horizontally uniform buoyancy fields that vary quadratically with z over the vertical extent

of each gricl cell. For such buoyancy profiles, the error associated with the weighted Jacobian

scheme continues to decrease like l/K’2, where K is the number of grid cells in the vertical,

even when the standard scheme would be hydrostatically inconsistent.

Unfortunately, tests with horizontally uniform buoyancy profiles reveal that the error as-

sociated with the weighted Jacobian scheme does not continue to decrease with K if the

buoyancy is not a quadratic functions of z. Indeed, the cancellation of errors in the stan-

dard Jacobian gives it an advantage over the weighted Jacobian when the buoyancy field is

horizontally uniform. IIowever, the derivation of the weighting factor used in the weighted

Jacobian formulation makes it clear that the advantage of this scheme should become evident

when both horizontal and vertical buoyancy variations are present. Examination oft he results

corresponding to a front over strongly sloping bottom topography shows that this is indeed

the case. It is apparent that each scheme has advantages under certain circumstances.

The schemes discussed here can be used to avoid pressure gradient errors associated with

topography-following coordinates if the buoyancy field varies linearly in either s or z. For

nonlinear vertical density profiles, care is still required to minimize truncation errors. Removal

of the vertical stratification as much as possible is an important method of controlling this

error. Further improvements can be achieved through the use of a stretched vertical grid

that increases resolution in the vicinity of rapid vertical variations in the deviations from this

mean profile. Second order accuracy in the grid spacing can be retained with a non-uniform

vertical grid by using a generalized s-coordinate system such as that considered by Song and

Haidvogel (1994). Examples based on Song and Haidvogel’s coordinate system show that,

in realistic situations, the accuracy can sometimes be improved by a factor of 10 or more

through the choice of the coordinate system, without increasing the computational burden.
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In practice, although the square of the grid size will not approach zero, the accumulation

of error can be controlled if integral properties of the continuous system are retained. In

Part 11 of this work, we show that integrated momentum, energy and bottom torque effects

are accurately represented by the present schemes. This is proven theoretically and verified

experimentally through examination of the results of prognostic integrations.
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APPENDIX A:

Various Vertical Coordinates

z-coordinate system: The z-coordinate system is the most commonly used Cartesian

coordinate system with the z-axis pointing vertically upwards and the zy-plane occupying the

undisturbed water surface. In numerical ocean modeling, the grid size in the vertical direction

can be easily arranged to allow the highest resolution near the surface and somewhat less

resolution below the thermocline. However, difficulty is encountered in representing varying

topography, especially near coastal boundaries where the ocean depth varies rapidly from

shallow to deep water. In such cases, a z–coordinate will approximate the bottom as a series

of steps. This may lead to difficulty in accurately representing the effects of steep bottom

slopes.

a-coordinate system (Phillip 1957): This coordinate transforms the irregular physi-

cal domain, bounded by free surface and varying bottom, to a fixed regular computational

domain. The coordinate transformation can

.2--(
g.—

H=’

be written as

–h<z <[,

where H = h(z, y)+~(x, y, t). The advantage of this coordinate is that it accurately represents

both the depth and the bottom slope. A disadvantage is that it cannot maintain equally high

resolution near the surface layer independent of local depth. For example, if a coastal region

with a minimum inshore depth of 50 m and a maximum offshore depth of 5000 m is represented

by a a–coordinate with 20 evenly spaced levels, the layer thicknesses are 2.5 m in the near-

shore region and 250 m in the offshore region. This kind of resolution is not likely to represent

surface mixing processes at all well in the deep ocean.

Hybrid coordinate system (Span and Robinson 1990): The hybrid coordinate system

is a combination of the z-coordinate for the upper part of the ocean, and the o-coordinate
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for the lower part of the ocean. The coordinate transformation can be written as

However, the derivative of this coordinate is discontinuous across the interface ZC, and a

matching condition must be applied at this location.

s-coordinate system (Song and Haidvogel 1994): The s-coordinate system is designed

to permit uniformly high resolution near the surface like the z–coordinate and preserve the

bottom following character of the o–coordinate. Its formulation consists of three terms:

z=((l+s)+hcs+(h

where C(s) is a set of s–curves, defined by

c(s) = (1 – b)sj::’) +

– hc)C(s), –l<s <0,

~tanh[e(s + ~)] – tanh(~O)
2tanh(~O)

7

where O and b are the surface and bottom control parameters. Typical parameter ranges are

0<0<20 and O ~ b ~ 1, respectively. hC is a constant chosen to be the minimum depth of

the bathymetry or a width of surface or bottom boundary layer in which a higher resolution

is required. Features of this s–coordinate system include that the o–coordinate system is

recovered as a special case by setting O = O, it has a simple linear functional dependence on

C(Z, Y, t) and h(z, Y), and z is a continuously differentiable function of s. With an equal grid

step in s, and by choosing the parameter O appropriately, the highest resolution is achieved

near the surface layer (b = O) or near surface and bottom (b = 1), independent of the varying

bottom topography.

Isopycnal coordinate system: Different from all of the above vertical coordinates which

are either fixed or nearly fixed in space, the isopycnal coordinate system is determined such

that computational levels follow density surfaces, p = p(z, y, z, i). This system is more natural

for the large-scale ocean circulation because thermocline trajectories are believed to be largely

tangential to density surfaces. However, it suffers from the same problems with the resolution

of steep topography as the z-coordinate models do since isopycnals do not generally conform

to the topographic variations.
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Figure Captions

Figure 1: The computational stencil of the Arakawa C-grid in the horizontal, and a stag-

gered grid in the vertical. The open circles are the locations of p and s, and the squares are

the locations of u. The solid dot indicates the evaluation position for 6Ji+\, ~+~.

Figure 2: Theoretical estimates of the bottom level geostrophic currents caused by the

pressure gradient force error as a function of the number of vertical levels (K) for a density

profile which varies quadratically in the vertical. The solid lines show results predicted for

the standard Jacobian and the broken lines show the results for the weighted Jacobian.

Figure 3: The vertical profiles of the buoyancy frequency (cph x 1000) and the first three

baroclinic Rossby modes (l°K) computed for a 2000 m deep ocean with stratification repre-

sentative of the California Current region.

Figure 4: Vertical profiles of the pressure gradient force error using three different vertical

resolutions (K=1O, 20, 30) disturbed by the first three baroclinic Rossby modes. Solid lines

indicate results computed with a uniformly spaced a-system and dash lines correspond to

results obtained with Song and Haidvogel)s s-system with O = 3.

Figure 5: Maximum value of the pressure gradient error as a function of the number of

vertical levels (K) for vertical density profiles corresponding to the first three Rossby wave

modes. Results for the three modes are shown in each frame. The larger errors correspond

to the higher modes which generally contain less of the variance under realistic conditions.

The three frames show results corresponding to three different approaches: (a) the standard

Jacobian scheme in o-system; (b) the standard Jacobian scheme in the s-system with 0 chosen

to minimize truncation errors; (c) the weighted Jacobian scheme in the s-system with O = 3.

Figure 6: Cross shelf sections of: a) potential density; b) exact geostrophic current; c)

pressure gradient force error with the standard Jacobian scheme; and d) pressure gradient

force error with the weighted Jacobian scheme. Horizontal resolution is 5 km and there are

twenty s-levels. For the weighted Jacobian, the error is zero, but even for the standard

Jacobian, the errors are generally less than 0.05% of the maximum geostrophic current.
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Figure 7: As in Figure 6, but the density field is now an exponential function of depth so

that the weighted Jacobian does not give the exact geostrophic current. Nevertheless, errors

are generally less than 0.270 of the maximum current speed for the standard Jacobian and

less than 0.02% for the weighted Jacobian. Results above 1500 m depth are shown. The

horizontal distance is 200 km.

Figure 8: As in Figure 7, but the horizontal grid spacing is increased from 5 km to 20 km.

Errors have risen to about 2.670 of the maximum current speeds for the standard Jacobian

and to about O.l?lo for the weighted Jacobian. Results above 1500 m depth are shown. The

horizontal distance is 200 km.
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Figure 2: Theoretical estimates of the bottom level geostrophic currents caused by the pressure

gradient force error as a function of the number of vertical levels (K) for a density profile which

varies quadratically in the vertical. The solid lines show results predicted for the standard

Jacobian and the broken lines show the results for the weighted Jacobian.
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results obtained with Song and Haidvogel’s s-system with O = 3.
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Figure 5: Maximum value of the pressure gradient error as a function of the number of

vertical levels (K) for vertical density profiles corresponding to the first three Rossby wave

modes. Results for the three modes are shown in each frame. The larger errors correspond

to the higher modes which generally contain less of the variance under realistic conditions.

The three frames show results corresponding to three different approaches: (a) the standard

Jacobian scheme in a-system; (b) the standard Jacobian scheme in the s-system with O chosen

to minimize truncation errors; (c) the weighted Jacobian scheme in the s-system with O = 3.
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Figure6: Cross shelfsectionsof a) potential density; b) exact geostrophic current; c)pressure

gradient force error with the standard Jacobian scheme; andd) pressure gradient force error

with the weighted Jacobian scheme. Horizontal resolution is 5 km and there are twenty s-

levels. For the weighted Jacobian, the error is zero, but even for the standard Jacobian, the

errors are generally less than 0.05700f the maximum geostrophic current. Results above 1500

m depth are shown. The horizontal distances 200 km.
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Figure7: Asin Figure6, but the density field isnow an exponential function ofdepth so

that the weighted Jacobian does not give the exact geostrophic current. Nevertheless, errors

are generally less than 0.2% of the maximum current speed for the standard Jacobian and

less than 0.02% for the weighted Jacobian. Results above 1500 m depth are shown. The

horizontal distance is 200 km.

43



a). Densitv field

,—,—

I
l—~

coNTwl Flwn26T02s.3BY .1

c). Error with SJ3 (cm/s)

—
CONTCU7FIW -1.6 T0-.2BY .2

b). Exact geo-currect (cm/s)

d). Error with WJ3 (cm/s)

CCNTWSFd-.O55TO .005BY .01

Figure8: As in Figure 7, but the horizontal grid spacing is increased from5 kmto20 km.

Errors haverisen toabout2.6%of themaximumcurrent speeds forthe standard Jacobian and

to about 0.l% for the weighted Jacobian. Results above 1500 m are shown. The horizontal

distance is200 km.
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