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ABSTRACT 

The Palomar Testbed Interferometer (PTI) is a long-baseline infrared 

interferometer located at Palomar Observatory, California. One operational 

mode of PTI is  single-baseline  visibility measurement using pathlength 

modulation with synchronous readout by a NICMOS-3 infrared array. The 

visibility estimators  are similar to those used with photon-counting detectors, 

except that greater  attention is  given to correcting biases  from the detection 

process. These include biases attributable  to detector offsets and read noise; 

their effects  differ  for incoherent and coherent estimators. Quality measures such 

as measured fringe-tracker performance can be  used to improve the visibility 

estimates or their error bars. 
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1. Instrument  configuration 

The  Palomar Testbed Interferometer (PTI) (Colavita et al. 1988; Wallace 1998; 

Colavita et  al. 1994) uses coherent fringe demodulation and active fringe tracking, similar 

to  that employed with the Mark I11 Interferometer (Shao et al. 1988). Differences arise 

attributable  to  the use of an infrared array  detector with its  attendant read noise and 

required bias corrections. 

The  beam combiner on PTI accepts the tilt-corrected, delayed beams from the two 

interferometer apertures. These are combined at a  beamsplitter,  and the two combined 

outputs directed to  an infrared dewar. One output is  imaged onto  a single  pixel of a 

NICMOS-3 infrared array. This white-light pixel  is band-limited by an astronomical K 

(2.00-2.40 pm FWHM) filter, yielding an effective  wavelength of -2.2 pm.  The  other 

output is dispersed with  a prism spectrometer and imaged adjacent to  the white-light pixel 

on the same line of the infrared array. Resolution is variable; one typical configuration uses 

7 spectrometer pixels with center wavelengths of 1.993-2.385 pm, yielding average channel 

widths of 65 nm. The combined light for the spectrometer channels is spatially filtered prior 

to dispersion with a single-mode infrared fiber. The white-light channel is not explicitly 

spatially filtered, although some filtering occurs because of the finite pixel  size (40 pm pixel 

and  an f/10 relay). 

2. Array  readout 

The infrared array is read out coherently using a 4-bin algorithm with  pathlength 

modulation implemented on the optical delay  line. The 100-Hz modulation uses a  sawtooth 

waveform, and  the array readout timing varies according to  the wavelength of each  pixel 

to achieve a one-wavelength scan for all channels. Clocking constraints  and overhead lead 
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to a typical sample integration  time of 6.75 ms (out of a sample spacing of 10 ms) for the 

white-light pixel, scaling proportionally foi  other wavelengths. 

For each sample period, the active and adjacent lines of the array  are first cleared, 

the reset pedestal for  each data pixel  is read,  and each  pixel  is then read out  after each 

quarter-wave of modulation. Each of these (nondestructive) “reads” is actually an average 

of 16-64 consecutive 2-ps subreads, used to reduce the effective read noise, typically to a 

correlated-double-sample (cds) value of 12 e- for the white-light pixel and 16 e-  for the 

spectrometer pixels. These 5 reads per sample for the white-light and  spectrometer pixels 

are  the  fundamental interferometer data. 

Denote these 5 reads as zi, ai, bi, ci, and di ,  where i = 0 denotes the white-light pixel 

and i = 1. . . R denote the R spectrometer pixels. The  integrated flux in each quarter-wave 

time bin is calculated as Ai = ai - zi, Bi = bi - ai, Ci = ci - bi, and Di = di - ci. From these 

values, the raw fringe quadratures  and  total flux (in units of dn)  are calculated as 

We can also calculate an energy measure which we denote  as 

From these quantities we can estimate the fringe phase, visibility, and signal-to-noise ratio, 

but first it is  necessary to correct for  biases associated with the detection and readout 

process. 
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3. Biases 

It’s convenient to speak of “dc” and “ac” biases. The dc biases are essentially the zero 

points of A,  B ,  C,  and D ,  and  are those values  observed with the instrument pointing at 

dark  sky.l(At high light levels, there  are also nonlinearities as  the detector saturates,  but 

these effects are small for typical observations.) Expressed in terms of the  quadratures 

and flux, we denote the biases as B X ,  BY,  and B N ,  so that  the corrected values of these 

quantities  are given as (omitting subscripts for clarity) 

X = X - B X  

Y = Y - B Y  

h 

h 

N^ = N - B ~ .  

We can also correct NUM  for the dc biases as 

NTM = NUM - BX(2X^+ B X )  - By(2p  + BY) .  

This is equivalent to simply computing NTM as X^2 + E2. 

There  are  additional  ac biases  which apply to NTM and arise from the squaring of the 

photon  and  read noise. Fundamentally, the two terms  are given as 

In the first equation, k is the gain per pixel in units of dn per electron, typically 0.11 

for the  PTI array electronics, and $ is the corrected flux in dn.  This  term is the 

‘With an ideal detector, these biases  would be identical, proportional to  the  dark current 

and background. In practice, the biases on A,  B,  C,  and D are slightly different. 
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standard photon-counting bias. In the second equation, Ocds is the detector read noise 

(correlated-double-sample) in dn, with the factor of 4 arising from the 4 bins used to 

compute NUM. We are usually  read-noise limited on the channels of interest,  in which  case 

B'" dominates. Correcting NTM for the  ac biases  yields 

4. Bias  measurements 

The biases for  each  pixel are measured at  the beginning of each night of observation. 

While these initial values are  adequate for proper operation of the real-time system, the 

biases are also measured repeatedly throughout the night for  use in the science data 

processing. 

Initial  calibrations A low-level calibration measurement cal-low is made at  the beginning 

of each night with the instrument pointed at  dark sky. The bias terms B X ,  BY,  and BN are 

computed simply as  the measured values of X ,  Y, and N .  The bias term B'" is computed 

as the mean value of NTM. This term also incorporates that fraction of the photon-noise 

bias attributable  to finite dark count and background. 

A high-level calibration measurement cal-high is done at  the beginning of each night 

using an internal white-light source, which illuminates the white-light and  spectrometer 

pixels. The increased value of NTM with light level  is  used to  estimate  the pixel responsivity 

as 

k = (NTM - Br") / I T ,  

so that BP" can be computed for other light levels  using Eq. 9. These values of B X ,  BY, 

BN,  B'", and k are used by the real-time system. 
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On-going  calibrations Repeated measurements of the bias terms  throughout the night 

accommodate drifts  and improve the quality of the final data processing. Each typically 

125-s scan on a science object is bracketed by several other calibration measurements: 

total-flux foreground and single-aperture ratio calibrations precede the scan; a background 

calibration, typically 25-s long, follows it. 

A foreground measurement observes the target  with the instrumental  pathlengths 

intentionally mismatched to yield  zero  fringe contrast.  In  this case, the observed  value of 

NFM can  be used as  a direct estimate of the sum BP" + B'". The foreground calibration 

can also be used to estimate BX and BY.  

A ratio  calibration measurement observes the  target with one aperture blocked. 

Combined with the  total flux measured above, the intensity ratio between the interferometer 

arms can be estimated. 

A background measurement is essentially a low-level calibration measurement taken 

close in time to  the stellar observation, and as such  provides an  estimate of B X ,  BY,  B N ,  

and B'". 

These five calibration types can be used in different ways in  the final data analysis. 

Typically, the three  dc biases and B'" for each scan are  estimated from the associated 

background measurement, while BPn is calculated from the  actual flux during the scan 

using Eq. 9. Averaging of several nearby background measurements using a median filter 

generally improves the calibration quality. The current data processing pipeline normally 

uses the foreground and  ratio values  only as diagnostics. 



- 8 -  

5. Incoherent  estimators 

Given the bias-corrected values X ,  Y ,  N ,  and NTM for the white-light and spectrometer 

channels, we can estimate fringe  visibility. Below  we adopt  a nomenclature for time intervals: 

a scan is a single measurement of an astronomical target, typically 120-150 s of recorded 

data, accompanied by local calibration measurements as described above. A scan is divided 

into blocks, typically 25 s in length; the fluctuations of estimators among the blocks of a 

scan provides an estimate of their  internal errors. Each block  comprises a number of frames,  

which are typically 0.5 s long, and synchronized to  the half-second tick. The significance of 

a frame is that intentional fringe  hops to correct unwrapping errors in the real-time system 

h 
A , .  h 

are introduced only at frame boundaries. Each frame consists typically of up to 50 samples, 

which are  data  at  the fastest rate in the system, typically 10 ms,  which  is of order of the 

atmospheric coherence time. The  actual number of samples per frame will be less than 50 

if fringe acquisition or  loss occurs mid-frame; partial frames with less than typically 10 

samples are discarded in the  data processing. Squared visibility V 2  is estimated for  each 

channel as (see Mozurkewich et  al. 1991) 

v 2 = -  .Ir2 ((NTM)) 
( ( m 2  ’ 

where ( 0 )  represents an incoherent average  over a block.2 While we’re usually not 

photon-noise limited, the photon-noise-limited SNR is estimated similarly as 

The fringe phase is estimated as 

’With step,  rather  than fringe-scanning modulation, the leading coefficient of Eqs. 13, 

16, and 20 would be 4.0. 
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where we make  no attempt  to be rigorous with respect to phase offset. These estimates 

can be made for each  channel: we typically use the suffix wl to refer to  the white-light 

channel, viz. = G2. For the spectrometer channels 1 . .  . R, we also compute a composite 

spectrometer visibility KEeC as 

The range of the summation covers channels 1 . . . R, or a subset (for example, 2 . . . ( R  - l), 

which  excludes the lower-flux channels at  the band edges). The weights Wi can  be uniform, 

but  are typically computed as W. = N:/&s, which are  proportional to l/gt2, as discussed 

below. This composite estimator provides an improved signal-to-noise ratio,  and is  useful 

for compact sources where  visibility  changes with wavelength are smaller than  the estimator 

noise.  However, it still  retains the wide  fringe  envelope (and  thus decreased sensitivity 

to visibility errors caused by fringe-tracking errors) corresponding to  the narrow spectral 

channels of the spectrometer; the use of the weights  is  useful  for accommodating occasional 

spectrometer pixels with large read noises.  For  consistency,  when the composite visibility 

is  used  for  science, a composite wavelength computed with the same weighting  is  also 

employed. At the block  level, the SNR of the V 2  estimates is usually sufficiently  high that 

the final V 2  estimate for the scan is calculated as a simple average of the block V 2  values, 

rather  than carrying numerator and denominator separately. 

6. Coherent estimators 

We refer to  the previous estimators as incoherent, in that NUM, the sum of the 

square of the fringe quadratures, is computed and summed over the 10-ms samples; these 

are generally our default estimators. Alternatively, we can coadd the fringe phasors over 

multiple samples before computing NUM and related quantities, providing improved 
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signal-to-noise ratio (Shao & Colavita 1992a), but at  the expense of some atmospheric bias. 

To coadd the fringe phasors requires a phase reference,  for  which we use the white-light 

phase 4 w l  = 4 0 .  

We can  compute  a coherent visibility as follows: the white-light phase is scaled by the 

wavelength ratio between the white-light and channel of interest to yield 8i = 4wlXwl/Xi .  

The fringe quadratures  are  derotated  and averaged as 

At PTI, the coadd time is typically one 0.5-s frame, although this is  convenient rather  than 

fundamental. A coherent value of NUM is computed as 

where L is the number of samples in the coadded frame, which reduces the ac bias 

correction to account for the reduced noise in the coadded quantities. Fkom (NFM)coh, and 

(N)coh = (g) ,  the coherent V2 can be estimated as 

h 

h 

A composite V2 for the spectrometer channels can also be computed as for the incoherent 

channels, similar to Eq. 16. 

Given that  the white-light channel has a high SNR, as required for real-time tracking, 

the coherent white-light V2 is not an improved estimator because of coherence  losses  which 

occur in the phase-referencing  process.  However, it is  valuable as an estimator of at least 

part of this coherence  loss. We can estimate the coherence  loss r" as 
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and we usually divide the coherent spectrometer V 2  values through by this value as  a 

partial correction. To be more exact, one can account for the wavelength  difference  between 

the white-light and spectrometer channels by scaling the correction with wavelength as 

which assumes a simple exponential form  for the coherence  loss. We note that  there  are 

additional coherence  losses  in phase referencing,  some of which are discussed in Sec. 8.2. 

7. SNR of the V 2  estimators 

The “detection” noise on the V 2  estimator  attributable to photon  and  read noise (as 

opposed to noise attributable  to atmospheric turbulence) is readily calculated. As is usual, 

we model  only  noise on NUM, given by Eq. 4, and ignore the smaller noise in N that 

normalizes NUM in calculating V 2  (Tango & Twiss 1980). The  quadratures X and Y are 

each comprised of two correlated-double-sample reads, so that  the variances of X and Y are 

given as 0% = 0; = 2(&,. For additive Gaussian noise, = 20; = 802d,, and similarly 

for Y ,  yielding CTNUM = 40&. Thus, the  standard deviation of the (incoherent) V 2  estimate 

in the read-noise limit is 

where M is the  total number of samples, both  temporal  and  spectral, in the  estimate, 

and is thus applicable to  both single-channel and composite (with equal weights) visibility 

 estimate^.^ For arbitrary photon fluxes, read noise can be incorporated into the  standard 

3With  step  modulation, the leading coefficient of Eqs. 23, 26, 27, and 28 would be 16.0, 

with similar changes to Eq. 24. 
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(4-bin) photon-counting result (Tango & Twiss 1980), yielding 

2 4 ov2 = ~ 

4MN4 .Ir4 ( N2 + N3V2 + 160:~~  

Thus the read-noise limit applies when N << Nr-, where 

A numerical example is illustrative. For the case of a read noise of 16 e- per pixel, 

125 s of data  at 10 ms per sample, and 5 spectrometer channels in the  spectral composite, 

a  standard deviation of 0.02 requires 32 photons per channel per sample. 

For the coherent estimators, the  standard deviation is similar. Assume as above that 

M is the  total number of 10-ms samples in the estimate,  but that they  are first coadded to 

frames of length L before calculating NUM. In this case 

Thus,  the required photon flux  for a given accuracy scales as L-ll4.  With L = 50 and  the 

parameters above, an accuracy of 0.02 now requires 12 photons per channel per sample, 

although,  as discussed above, the coherent estimate is  more susceptible to systematic biases. 

7.1. SNR for bias estimation 

Strictly speaking, the above analysis is somewhat simplistic, as  it assumes that bias 

correction adds no additional noise.  For  low light  levels, the largest errors in bias correction 

are  attributable  to estimation of the ac biases BP" and B'"; errors in their  estimation 

are  additive  with the noise  on NUM as calculated above.  However, as the ac biases are 

computed from NUM measured under known conditions (Sec. 4),  the V2 errors  due to 

imperfect bias estimates can be computed using the expressions  above. Thus, for incoherent 
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quantities, the (incoherent) V 2  error due to imperfect bias subtraction is  given  by 

where M b  is the number of samples used in estimating the ac bias. This expression is strictly 

accurate only for the read-noise bias Brn, or  when both ac bias terms  are computed from a 

foreground calibration. However at low photon fluxes,  where bias errors are most significant, 

the read-noise term is dominant and  the above  expression  is a good approximation. 

For the coherent V 2 ,  the  situation is somewhat better, as the errors in the  ac biases are 

reduced by the number of samples in the coherent average, per Eq. 19. For the ac biases 

computed incoherently, and applied via Eq. 19, the applicable expression is 

subject to  the same caveats at Eq. 27. By  way  of comparison, if the biases were computed 

“coherently”, i.e., from measured values of (NUM),,h, then Eq. 28 would  have the same 

dependence on L as Eq. 26. 

Thus,  the  total “detection” noise  on V 2  is the  quadrature sum of u2 and c2, and  the 

contribution  due to bias estimation can be  important.  This  contribution is generally not 

important on bright sources where the noise  on V 2  is dominated by atmospheric effects. 

On fainter  targets,  the relative bias  noise can be decreased by incorporating  additional 

calibration data (for example, using background calibrations from a larger time window 

about  the science scan,  rather  than  just  its explicitly-associated background),  although 

eventual nonstationarity of the underlying statistics presents a  practical  limit. 

While calibration errors at low light levels are dominated by the  ac  terms,  the errors 

attributable  to  the dc bias terms  are easily computed: for both incoherent and coherent 

estimators, the errors E & ,  and associated with B X ,  BY,  and BN are given  by 
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8. Data  quality  measures 

Inter-block fluctuations of estimated  quantities  are useful to  estimate internal errors. 

However additional data quality measures are available. 

8.1. Lock time 

PTI uses a multi-stage algorithm for fringe acquisition and  track  (Colavita et al. 

1988). Essentially, the average SNR must  exceed a given threshold for the system to enter 

the “locked” state; loss of lock and reacquisition occurs if the SNR falls below a second 

threshold. Fringe data is  only  recorded  when  locked; to account for the time delay caused 

by the memory of the averaging filter in detecting loss of lock, data  at  the end of a lock 

is automatically expunged. Thus, with multiple locks, the elapsed time  to collect a fixed 

amount of data in order to complete a scan is increased. 

Two heuristic data-quality measures are the fraction of lock time to elapsed time,  and 

the number of separate locks that make up the  total  data on a scan. For bright stars  and 

good  seeing,  each scan is  comprised of just several long  locks.  For  very faint stars, or with 

poor seeing,  each scan can be comprised of many short locks,  reflecting the inability of the 

system to consistently track the fringe.  While  visibility can be estimated in all cases, the 

data quality in the  latter case  will be inferior.  Typically, this poorer data quality is evident 

in the inter-block fluctuations, in which  case the lock-time metric is only advisory. 
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8.2. Jitter 

We can estimate  a first-difference phase jitter U A ~  as 

where  is computed from the 10-ms samples. While this  quantity is not unbiased with 

respect to detection noise,  successful  fringe tracking typically requires an SNR > 5, so that 

the detection bias on &, should be < 0.08. 

With  an ideal instrument, U A ~  is related to  the atmospheric coherence time. Coherence 

time  can be defined in various  ways  (Buscher 1994). Let  TO,^ denote the structure-function 

definition of coherence time, viz. that sample spacing for  which the phase difference  between 

samples is one radian rms. The  structure function depends on time  as Di(t) = ( t / ~ o , i ) ~ / ~ .  

For i = 1, representing contributions from a single point on the wavefront (the usual 

adaptive-optics definition), ~ 0 , ~  = 0.314ro/W for  coherence diameter ro and  constant wind 

speed W ;  for i = 2, applicable to interferometry, 7 3 2  = 0.207ro/W. Let  TO,^ to denote 

the variance definition of coherence time, viz. that time interval for  which the phase 

fluctuations about  the interval mean are one radian rms. It is  given  by T0,l = 1.235ro/W 

and T0,Z = 0.815ro/W, with time evolution IS: = (T/T0,i)5/3. 

Thus, for an ideal instrument, the coherence time  TO,^ can be estimated  as 

where t is the sample spacing. fiinge motion during the sample integration  time blurs 

the fringe, reducing the visibility. For rapid (with respect to underlying phase motion) 

fringe scanning, the coherence reduction is related to  the high-pass fluctuations  about the 

interval mean, (a4)hp ,  as I? = exp( -(a+)ip), or  given the coherence definitions above, 

rb = ex~(-(T/T0,2)~/~).  We can write this in terms of the phase jitter as 

rb = exp ( -c..:~) , (33) 
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with the coefficient Cr given  by 

(34) 

For T = 6.75 ms  (for the white-light pixel) and t = 10 ms, Cr = 0.053. 

A more careful calculation of Cr can be done  for this case (Appendix A), accounting 

for the finite integration  time required to measure &l, which  yields Cr = 0.057. A similar 

calculation can be done under the assumption that all phase noise  is caused by narrow-band 

vibrations with frequency << l/t; in this case, Cr = 0.038. 

When we apply this correction, we usually err on the side of undercorrection by 

adopting a modest leading coefficient of 0.04. In general, an empirical visibility-reduction 

coefficient can be adopted from fits to  the measured data applicable to  the actual 

atmospheric realization and  instrumental configuration. However,  for data calibrated  with 

spatially- and temporally-local calibrators  (and especially if the calibrators  are of similar 

brightness to  the  target),  the reduction in visibility due to  the above temporal effects 

will be mostly common  mode and divide out of the normalized  visibility. In  this case, 

the value of the  jitter is  useful as a measure of the seeing, and indirectly of the  data 

quality. Finally, we note that  the coherent V 2  estimates on PTI often exhibit coherence 

losses larger than predicted from the models  above. These may be attributable  to different 

apodizations of the starlight pupil between the spectrometer and white-light sides of the 

beamsplitter.  In  particular, the single-mode  fiber preceding the spectrometer imposes a 

Gaussian apodization on the pupil, while the white-light channel-with  no explicit spatial 

filter-imposes a more  uniform pupil weighting. These different apodizations will result in 

slightly different instantaneous phases between the two beamsplitter outputs,  and  thus a 

coherence  loss  when phase referencing the spectrometer channels to  the white-light phase. 
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8.3. Ratio Correction 

PTI uses a single-mode  fiber after beam combination to spatially filter the spectrometer 

channels. Spatial filtering increases the raw  visibility and reduces the concomitant noise 

attributable  to  spatial effects; temporal effects  must still be calibrated. As spatial filtering 

by the fiber essentially rejects light which  would not interfere coherently, there is induced 

scintillation, which has a second-order  effect  on  visibility. With simultaneous intensity 

measurements of each arm in a fully  single-mode  combiner (Forest0 1994), an essentially 

perfect correction for this effect  is  possible, but it can be shown (Shaklan, Colavita, & 

Shao 1992) that measurement of only the average intensity ratio between the two arms is 

adequate. If we denote  this  ratio as R12, then the correction for the induced scintillation is 

As discussed in Sec. 4, the combination of the foreground and  ratio measurements allows 

estimation of S12 for each scan. 

Currently, strict application of the  ratio correction at  PTI has been unsatisfactory, and 

we generally do not apply it. We attribute this to two  effects.  One  is that given  noisy  values 

of R12, SI2 is a biased estimator,  and will tend  to over-correct the visibility. The second  is 

that  the measurements of the  ratio  are not truly simultaneous with the scan.  Thus, seeing 

nonstationarity will  affect the estimate. Also, there is a selection effect as fringe data is 

only recorded when  locked,  while the flux calibrations are contiguous. 

Even without the  ratio correction, the spatially-filtered data yields significantly- 

improved visibility estimates. However, the  ratio correction has been  useful as  an  additional 

indicator of data quality. For example, at high zenith angles, asymmetric (due to 

misalignment) vignetting in the system will  increase S12. But  as  with jitter, vignetting is 

tied to sky position, and spatially-local calibration will ameliorate most of the systematic 
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visibility effects. 

9. Conclusion 

The use of array  detectors on PTI requires attention to bias correction in fringe- 

parameter  estimators, especially  energy  measures  like V 2  which  use squared quantities. 

Observations with.PT1 incorporate nightly and on-going bias calibrations, which can  be 

used to compute  optimal bias corrections. In  addition to statistical noise in the estimators 

themselves, noise in the bias terms plays a role  in the overall data quality. Inter-block 

fluctuations of estimated  quantities  are useful to estimate  internal errors. Auxiliary data 

quality metrics include the tracking jitter  and  the ratio-correction estimate, which can be 

used for open-loop corrections or as independent data quality measures. 

Thanks to Fabien Malbet and Gerard van  Belle  for  useful comments. The work 

reported here was conducted at  the  Jet Propulsion Laboratory, California Institute of 

Technology, under contract with the National Aeronautics and Space Administration. 

A. Temporal  coherence  calibration  using the phase jitter 

We start with the assumption that  the coherence reduction on V 2  can be written  as 

where (u4)hp is the high-pass phase jitter. This is strictly true for the case  where the fringe 

scanning is  much faster than any frequencies of interest, although the results are similar 

with  a slower scan. The high-pass jitter in Eq. A1  is  given  by the frequency-domain integral 

utp = /dfW(f)( l  - sinc2(rfT)), 
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where W(f) is the phase power spectrum, 1 - sinc2() is a high-pass filter, and T is the 

sample integration time. A similar spectral representation exists for the phase jitter 

(Eq. 31): 

oA4 2 = /dfW(f)sinc2(.rrfT)4sin2(?rft), 

where sinc2() accounts for  averaging  over the sample integration  time, while sin2() is a 

high-pass corresponding to a sample spacing of t. 

For f < 1/T, the filter function in the integral for o& is Hhp(f) E $r2T2 f 2 ,  while  for 

f < l / t ,  the filter function in the integral for ai4  is H ~ 4 ( f )  N 4.rr2t2f2. The  ratio of the 

filter functions is 

With T = 6.75 ms  (for the white-light pixel) and t = 10 ms, we calculate Cr = 0.038. Thus, 

for narrowband low-frequency  noise, we can write the visibility reduction directly in terms 

of the first-difference variance as 

This same formulation applies for other noise  models. For W(f)  given by an 

atmospheric power spectrum, nominally W ( f )  cx f -8/3 (assuming a low fringe-tracker 

bandwidth),  it is  necessary to compute the integrals numerically. For  power  laws of the 

form j"",  some representative results for T/ t  = 0.675 are 

Q Cr 

8/3 0.057 

2.5  0.070 

7/3  0.088 

2.0 0.145 
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