TI5-0997/

MAP-MOTIVATED CARRIER SYNCHRONIZATION OF GMSK BASED ON
THE LAURENT AMP REPRESENTATION!'
Marvin K. Simon
Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA91109

ABSTRACT

Using the MAP estimation approach to carrier
synchronization of digital modulations containing ISI
together with a two pulse stream AMP representation of
GMSK, it is possible to obtain an optimum closed loop
configuration in the same manner as has been previously
proposed for other conventional modulations with no ISI.
We anticipate that this scheme will outperform other GMSK
carrier sync schemes that are derived in a more ad hoc
fashion. In view of the fact that the second pulse has
significantly less energy than the first, it is also possible
that a single pulse stream AMP representation of GMSK is
sufficient for satisfactory carrier sync performance thereby
reducing the implementation complexity.

INTRODUCTION

More than a decade ago Laurent [1] described an exact
representation for constant envelope digital phase
modulations, more commonly known as continuous phase
Jfrequency modulation (CPFM) or simply continuous phase
modulation (CPM), in the form of a superposition of a
number of time/phase shifted amplitude-modulation pulse
(AMP) streams. The number of such streams was dependent
on the partial response nature of the modulation as
described by the duration, L (in symbols), of the frequency
pulse that characterizes the CPM. The primary focus of
this work was on binary modulation? because of its relative
simplicity of implementation and as such the number of
pulse streams in the AMPrepresentation is 2L Laurent’s
motivation for presenting such a representation was two-
fold. First, it allowed for easier evaluation of the
autocorrelation and power spectral density (PSD) of such
modulations, in particular, simple results were specifically
obtained for half-integer index modulations, i.e., ones
whose frequency modulation index was of the form
h=n+1/2, n integer. Second, it allowed for
approximation (with reasonably good accuracy) of CPM
by a single pulse stream with one optimized pulse shape

I This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology under a contract with the
National Acronautics and Space Administration.

2 The work was later extended to the M-ary case by Mengali and
Morelli [2].

(called the “main pulse”) and as such offered a synthesis
means no more complicated, in principle, than minimum-
shift-keying (MSK), which itself is a special case of CPM
with arectangular frequency pulse shape and a modulation
index h=0.5.

Three years later, Kaleh [3] exploited Laurent’s
representation of CPM to allow for simple implementation
of coherent receivers of such modulations, in particular,
for the case of Gaussian MSK (GMSK). Two forms of such
receivers were considered, namely, a simplification of the
optimum maximum-likelihood sequence estimation
(MLSE) receiver and a linear MSK-type receiver, both
which yielded small degradation relative to the true
optimum MLSE receiver. In addition, Kaleh explicitly
showed that for GMSK with a bandwidth-bit time product
BT, = 0.25 and a 4T}, -wide approximation of the Gaussian
pulse,i.e., L =4,atwo (rather than 21! = 8) pulse stream
approximation is for all practical purposes (the fraction of
energy in the neglected six pulse streams is 2.63x107°)
exact. The effective pulse shapes on each of the AMP
streams have different shapes and are of different durations
(one is 3T}, wide and one is 57}, wide). As such, both pulse
shapes exceed the baud interval and hence each of the AMP
pulse streams contains ISI.

In addition to the above advantages of the AMP
representation insofar as spectrum evaluation and ideal
receiver implementation, there is yet another advantage
having to do with carrier synchronization of the receiver.
Mengali and Andrea [4] discuss the use of the Laurent
representation for CPM primarily in the context of the
single pulse stream approximation and as such arrive at
decision-directed phase estimation structures that are
analogous to those used for MSK.

In this paper, we carry the carrier synchronization
problem two steps further with the goal of achieving a more
optimum solution. First, we consider the two-pulse stream
approximation suggested by Kaleh rather than the single
(main) pulse approximation. Second, using the maximum
a posteriori (MAP) approach for carrier phase estimation
as applied to pulse stream modulations with ISI [5,6], we
arrive at a closed loop structure that is not limited to a
decision-directed form and moreover accounts for the ISI
directly within its implementation. The focus of the
presentation here will be on first restating the two pulse



strecam AMP representation of GMSK in a form that is
amenable to MAP estimation of carcier phase and then
presenting the optimum structure.’

AMP REPRESENTATION OF GMSK

In what follows it will be convenient to deal with the
normalized (unit amplitude) complex envelope of s(¢), i.e.,
the complex baseband signal S(r) defined by the relation

Sty=exp{jo(t. @)}, nT, St<(n+ DT, ()

where a= (..., 0_|, &, 0}, 03,...) is the independent
identically distributed (i.i.d.) binary data sequence with
each element taking on values +] and

ot )= ”% a;q(t —iTy) )

is the equivalent phase modulation process with
q(t)={'_g(tr)dr the normalized phase smoothing
response ( g(t) is the normalized instantaneous frequency
pulse in the zeroth signaling interval) that defines how the
underlying phase 7q; evolves with time. Assuming that
g(#) is L bits in duration, then the above-mentioned
normalization is such that

0, t<0
)= 3
q(1) % '> LT, 3

For GMSK, this normalized phase smoothing response is
obtained as,
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where Q(x) is the Gaussian probability integral, B is the 3
dB bandwidth of the Gaussian transmit filter used to shape
the pulse, and the value of L used for the approximation is
a function of the BT, product. For BT}, =.25 (typical of
current applications in that it represents a good tradeoff
between bandwidth compression and error probability
performance), a value of L = 4 is sufficicnt, i.e., a total of
2471 =8 PAM components is what will be nceded to
completely represent the signal in AMP torm.

3 By optimum we mean that closed loop structure whose error
signal is motivated by the derivative of the log-likelihood ratio
associated with the MAP estimation of carricr phase.

Deftine the generalized phase pulse function by

rg(t)y, OSt<LT,
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which is obtained by taking the nonconstant part of ¢(t).
i.e., the part that exists in the interval 0<¢< LT and
reflecting it about the ¢ = LT axis. Thus, in view of (5),
¥(t) is a waveform that is nonzero in the interval
0<1<2LT, and symmetric around t=LT,. The
importance of ¥(r) is that it allows definition of the
following functions which become an integral part of the
AMP representation of GMSK:

So() =sinW (), S,(t) = So(t +nTy) =sinY (¢t +nT}) (6)

Next define the 2L71=8 distinct pulse shapes

C;(t),i=0,1,...,7 each of which is a product of the basic
generalized pulse shape Sy(¢) and L-1 =3 other time shifts
of Sp(r) [1, Eq. (11)]. Finally, then the generic AMP form
for the complex envelope of GMSK is [1}]
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i.e., a superposition of eight amplitude/phase modulated
pulse streams. By virtue of the fact that some of the Cy(1)’s
extend beyond 7}, sec (in particular the first four in the set,
i.e., the ones with the most energy), as previously stated
the corresponding pulse streams consist of overlapping
pulses and hence contribute ISI. Also in (7)
ag.n 4 ,/(m/2)Ak, is the equivalent complex (unit
amplltude) data symbol for the nth transmitted pulse in the
Kth stream whose phase (7/2)Ag ,, depends solely on the
past information data sequence a[l].

In the AMP representation of (7). the dominant term is
the pulse stream corresponding to Cy(r) (for a full response
(L =1)CPM, e.g., MSK, it would be the only one) since its
duration is the longest (at least 27 longer than any other
pulse component) and it also conveys the most significant
part of the total energy of the signal. The next most
significant term would be the pulse stream corresponding
to C,(t)which contains virtually all the remaining signal
energy. Thus, as previously alluded to, it is sufficient to
consider only the first two pulse streams in (7) and hence
for all practical purposes we may “exactly” describe GMSK
by the complex signal

Sty= Yay,Co(t=nTy)+ Ta,C\(t—nTy) (8)

n=-—o0 n==co

where specifically



Co (1) = Sy (S| (DS (1)S3(1),
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Also, it can be shown that the equivalent complex data
symbols satisfy the relations [3]
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Note that the symbols in the two data streams alternate
(from bit to bit) between purely real and purely imaginary
unit amplitude values. Thus, in terms of the real (bandpass)
GMSK signal we can view it as being composed of the
sum of two pulse-shaped offset QPSK-type signals with
pulse shapes corresponding to Cy(#) and Cj(¢) and I, Q
+1 data symbol (7; =27, in duration) sequences
respectively corresponding to

ag2n =Im{dg 2.}, bo2net = Re{do2n41}

(n
a120 =Re{dyan ) b1 2041 = Im{d) 2041}
That is,
s(t) = f Eb Re S(z)ef“”
Ty
= ’3&[ Zao 2"+ICO(I“(2II+I)Tb)COS(01
Ty [n=-
— by 2,Co(t—2nT,)sinw,t (12)
n=-oo

+ X ay2,Ci(t-2nTy)cosw.t

n=-—oc

- Zbl,?.n'HCl (t —(2" + l)Tb)sin (OCI]

n=—oo
Kaleh [3] also shows that the effective data sequences for
the two symbol streams as defined in (10) each have
uncorrelated symbols and furthermore the two sequences
are uncorrelated with each other. It is possible to show a
stronger condition on these sequences, namely, that they
are each independent identically distributed (i.i.d.) and
independent of each other. This property will be important
in applying the average likelihood approach for obtaining
the carrier phase estimate. To see these independence
propertics, it is interesting to interpret the equivalent I and
Q data sequences in (12) in terms of the differentially
encoded version of the true information sequence @ [1].
In particular, it is straightforward to show from the

properties tn (10a) that tor the first pulse stream the
cquivalent [, Q data scquences {a(,.bm},{b(,_zn}
correspond to the odd/even split of the difterentially
encoded version of @ with the additional constraint that
every other symbol be inverted. [n mathematical terms, if
Vi = o vy g represents the differentially encoded version
of oy, then

dgaket = (=0 vapon boak =(=D)fvay (13)
It should be noted that the relation in (13) is precisely the
same cquivalence between the frequency modulation
representation of MSK and its offset QPSK equivalent. For
the second pulse stream, the equivalent I, Q data sequences
{a,_znﬂ},{pb,‘z,,} are obtained by first multiplying the
differential encoder output by the information bit delayed
by one bit interval before performing the odd/even split
and alternate symbol inversion, i.e.,

k A,k
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This equivalence can be seen by rewriting the second
relation in (10a) as
Gy,  Opylpp-
——
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Finally, since for an i.i.d. information sequence & the
differentially encoded version of this sequence is also i.i.d.
and since multiplication by a one-bit delayed version of
the input does not destroy the i.i.d. property, we reach the
conclusions regarding the independence properties of the
symbol stream sequences given above. Based on the
entirety of the above, we conclude that GMSK can be
implemented with the superimposed offset QPSK
transmitter illustrated in Fig. 1. The two pulse shapes Cy(t)
and Cj(1) as defined by (9) together with (4), (5) and (6)
are illustrated in Fig. 2.

MAP ESTIMATION OF CARRIER PHASE

Consider now the received signal y(r) composed of the
sum of s(¢;0) and additive white Gaussian noise (AWGN)
n(t) where s(2;0) is given by (12) with the addition of a
uniformly distributed phase € included in each carrier
component. Based on an observation of y(r) over the
interval 0 £t < T, where we arbitrary assume that 7Ty is
an even integer multiple (say K) of the bit time T, we
wish to find the MAP estimate of 8, i.c., the value of 8
that maximizes the a posteriori probability p(B]y(r)) or
since @ is assumed to be uniformly distributed, the value
of 8 that maximizes the conditional probability p(_\'(t)|9).
For an AWGN channcl with single-sided noise power



spectral density V,, watts/Hertz, p(,\'(!)lﬂ) has the form
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where Cis a normalization constant and we have added to
the conditioning notation the implicit dependence of s(r;6)
on the i.i.d. Tand Q data sequences of the two pulse streams.
For a constant envelope (energy) signal such as GMSK, it
is sufficient to consider only the term involving the
correlation of y(f) and s(£;6) and lump the remaining
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Fig. 1. GMSK Transmitter Implementation Based on AMP Representation
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terms into the normalization constant.* Thus, we rewrite
(10) as

[)(_\'(f)lao. b(), al N b] N 9) =
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where for convenience we still use C to denote the
normalization constant.

Evaluation of (17) for s(¢;8) corresponding to a single
binary pulse stream, e.g., BPSK, with ISI was considered
in [5,6). Extension of the result to an s(r;0) corresponding
to a single pair of quadrature binary pulse streams (such as
QPSK) with identical ISI on the I and Q channels is
straightforward and was somewhat discussed in [5). What
we have for the AMP representation of GMSK in (12) is
two pairs of offset quadrature binary pulse streams each
pair having different amounts of ISI. (Recall that Cp(r) is
a pulse of width 57, and C|(¢) is a completely different
pulse of width 37},.) Evaluation of (17) for such areceived
signal has not been previously considered. Without
belaboring the details, following substitution of (12) into
(17) and averaging over the four i.i.d. component data
sequences ag,bg,a;,b;, then after considerable
manipulation it can be shown that

K- R
p(yig)=c I]lcosh{lc(k,o, 6)} KHzcosh{l:(k,O, 6)}
k=~3 k=—4

k odd keven (18)
K-2 K-1
x Tlcosh{I.(k,1,6)} TIcosh{I,(k.1,6)}
k=-2 k=~1
keven k odd

where
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Note that because of the presence of ISI in each of the
component pulse streams, the arguments of the hyperbolic
cosine terms involves integration over the entire
observation interval 0 < ¢ < K7, rather than just integration
over asingle bit interval as is customary in such problems
when ISI is absent. (Actually the finite duration of
Co(t-kT,) and C|(t—4T,) will truncate these

4 We note that for the general ISI problem as treated
in [5,6], the encrgy-dependent exponential term

cxp{—(l/NO)J'g;’s2(1;9)dl} is not constant and in fact

depends on the data sequence. However, for the “exact”
representation of GMSK by the two pulse stream AMP
form, we can make the constant envelope assumption and hence
ignore the energy-dependent term.

integrations to an interval (depending on the value of &)
smaller than the observation time interval but still larger
than the baud interval.) Finally, the MAP estimate of g,
i.c., Bpap is the value of 6 that maximizes (18).

CLOSED LOOP CARRIER SYNCHRONIZATION
OF GMSK

As has been done many times in the past to arrive at closed
loop carrier synchronizers based on open loop MAP
estimates, one takes the natural logarithm of the likelihood
ratio, differentiates it with respect to 8 and then uses this
as the error signal, ¢(8), in a closed loop configuration.
The reasoning behind this approach is that e(8) will be
equal to zero when 6 =6,,,p and thus the closed loop
will null at the point corresponding to the open loop MAP
phase estimate. Thus, proceeding in this fashion, we obtain

K-1
e(e)é}% In p(y(1)B) = ) > is(k.O,G) tanh{/,.(£.0.6)}
kodd

K-2

- X1.(k.0.0)tanh{/(k,0,6)}
k=—4
keven
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keven

K-1

- X I.(k,1,6)tanh {7 (k,1,6)}
k=-1
k odd

e0(6)+¢,(6)

where we have made use of the fact that from (19)
1.(k,1,6) and I (k,1,0) are derivatives of each other.
The result in (20) suggests a superposition of two loops
each contributing a component to the error signal
corresponding to associated pulse stream in the two pulse
stream AMP representation of GMSK. Fig. 3 illustrates
the first of the two loop components (i.e., the one that
generates ¢p(0)) that must be superimposed to arrive at
the closed loop GMSK carrier synchronizer suggested by
the error signal in (20). A similar figure would exist for the
second loop component that generates €;(6). We offer this
scheme as the “optimum” (in the sense of being MAP-
motivated) GMSK carrier synchronizer. As is customary,
the “tanh” nonlinearity can be approximated by a linear or
hard limiter device for low and high SNR applications,
respectively. The rate at which the loop updates its carrier
phase estimate can vary from every T, to every KT
seconds. In the case of the latter extreme, the observation
intervals used for each carrier phase estimate do not overlap
and as such the loop represents a sequential block-by-block
implementation of the MAP open loop estimator. In the
case of the former extreme, the observation intervals used
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Fig. 3. Block Diagram of Suboptimum ISI-Compensated MAP Estimation Loop for GMSK (First Signal Component)

for each carrier phase estimate overlap by (K -1)T,
seconds and as such the loop represents a sliding window
MAP phase estimator.

CONCLUSIONS

Using the MAP estimation approach to carrier
synchronization of digital modulations containing ISI
together with a two pulse stream AMP representation of
GMSK, it is possible to obtain an optimum closed loop
configuration in the same manner as has been previously
proposed for other conventional modulations with no ISL.
We anticipate that this scheme will outperform other GMSK
carrier sync schemes that are derived in a more ad hoc
fashion. The actual performance of our scheme is currently
under investigation and will be reported on in the future.
In view of the fact that the second pulse has significantly
less energy than the first, the outcome of these evaluations
might further demonstrate that a single pulse stream AMP
representation of GMSK is sufficient for satisfactory carrier
sync performance thereby simplifying the implementation.
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