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ABSTRACT

Using the MAP estimation approach to carrier

synchronization of digital modulations containing 1S1

together with a two pulse stream AMP representation of

GMSK, it is possible to obtain an optimum closed loop

configuration in the same manner as has been previously

proposed for other conventional modulations with no 1S1.

We anticipate that this scheme will outperform other GMSK

carrier sync schemes that are derived in a more ad hoc

fashion. In view of the fact that the second pulse has

significantly less energy than the first, it is also possible

that a single pulse stream AMP representation of GMSK is

sufficient for satisfactory carrier sync performance thereby

reducing the implementation complexity.

INTRODUCTION

More than a decade ago Laurent [1] described an exact

representation for constant envelope digital phase

modulations, more commonly known as conlinuousphuse

frequency modulation (CPFM) or simply continuous phase
modulation (CPM), in the form of a superposition of a

number of time/phase shifted amplitude-modulation pulse

(AMP) streams. The number of such streams was dependent

on the partial response nature of the modulation as

described by the duration, L (in symbols), of the frequency

pulse that characterizes the CPM. The primary focus of

this work was on binary modulation because of its relative

simplicity of implementation and as such the number of

pulse streams in the AMP representation is 2L-1. Laurent’s
motivation for presenting such a representation was two-

fold. First, it allowed for easier evaluation of the

autocorrelation and power spectral density (PSD) of such

modulations, in particular, simple results were specifically

obtained for half-integer index modulations, i.e., ones
whose frequency modulation index was of the form

h=n+l/2, n integer. Second, it allowed for
approximation (with reasonably good accuracy) of CPM

by a single pulse stream with one optimized pulse shape

1 This work was performed at the JCI Propulsion Laboratory,
California Institute of Technology under a contract with [he
National Aeronautics and Space Administration.

2 The work was later extended to the M-ary case by Mcngali wtd
Morelli [2].

(called the “main pulse”) and as such offerccl a synthesis

means no more complicated, in principle, than ntininumz-

shijit-keyin,g (MSK), which itself is a special case of CPM

with a rectangular frequency pulse shape and a modulation

index h = 0.5.

Three years later, Kaleh [3] exploited Laurent’s

representation of CPM to allow for simple implementation

of coherent receivers of such modulations, in particular,

for the case of Gaussian MSK (GMSK). Two forms of such

receivers were considered, namely, a simplification of the

optimum maximum-likelihood sequence estimation

(MLSE) receiver and a linear MSK-type receiver, both

which yielded small degradation relative to the true

optimum MLSE receiver. In addition, Kaleh explicitly

showed that for GMSK with a bandwidth-bit time product

BTb = 0.25 and a 4Tb -wide approximation of the Gaussian

pulse, i.e., L =4, a two (rather than 2 ‘-1 = 8) pulse stream
approximation is for all practical purposes (the fraction of

energy in the neglected six pulse streams is 2.63x 10-5)

exact. The effective pulse shapes on each of the AMP

streams have different shapes and are of different durations

(one is 3Tb wide and one is 5Tb wide). As such, both pulse

shapes exceed the baud interval and hence each of the AMP

pulse streams contains 1S1.

In addition to the above advantages of the AMP

representation insofar as spectrum evaluation and ideal

receiver implementation, there is yet another advantage

having to do with carrier synchronization of the receiver.

Mengali and Andrea [4] discuss the use of the Laurent

representation for CPM primarily in the context of the

single pulse stream approximation and as such arrive at

decision-directed phase estimation structures that are

analogous to those used for MSK.

In this paper, we carry the carrier synchronization

problem two steps further with the goal of achieving a more

optimum solution. First, we consider the two-pulse stream

approximation suggested by Kaleh rather than the single

(main) pulse approximation. Second, using the maximum

a posteriori (MAP) approach for carrier phase estimation

as applied to pulse stream modulations with 1S1 [5,6], we

arrive at a closed loop structure that is not limited to a

decision-dircctcd form and moreover accounts for the 1S1

directly within its implementation. The focus of the

presentation here will bc on tirst restating the two pulse



stream t\MP rcprcwntalion ot GMSK in a [orm thiitis

amcnatnlck) MAP estimation of carrier phase and (hen

prcscn[ing the optimum struclurc.’

AMP REPRESENTATION OF GMSK

[n what follows it will be convenient to deal with the

normalized (unit amplitude) complex envelope of s(r), i.e.,

the complex baseband signal ~(t)defined by the relation

~(t) = exp{j~(t, @}, nT’ < f <(n+ l)T~ (1)

where (x= (..., ct_2,a_l, ao, al, a2,...) is the independent

identically distributed (i.i.d.) binary data sequence with

each element taking on values +-l and

@(t,CZ)= Z ~ CXiq(f- iT~) (2)
i<tl

is the equivalent phase modulation process with

q(r) = J!@g(r)d7 the normalized phase smoothing
response ( g(t) is the normalized instantaneous frequency

pulse in the zeroth signaling interval) that defines how the

underlying phase ~ai evolves with time. Assuming that

g(t) is L. bits in duration, then the above-mentioned

normalization is such that

(3)

For GMSK, this normalized phase smoothing response is

obtained as,

(4)

()<t<LTb

where Q(x) is the Gaussian probability integral, B is the 3

dB bandwidth of the Gaussian transmit filter used to shape

the pulse, and the value of L used for the approximation is

a function of the BTb product. For BTb = .25 (typical of

current applications in that it represents a good tradeoff

between bandwidth compression and error probability

performance), a value of L = 4 is sufficient, i.e., a total of

21’-1 = 8 PAM components is what will be needed to

completely represent the signal in AMP form.

3 By optimum wc mean that closed loop structure whose error
signal is motivated by the derivative of the log-likelihood mtio
associated with the IMAP cs[ima[ion of carrier phmc.

DCfine lltc ,qctfctuliwl phase pulse

I

)rq(t). OSt<L~,

‘(’) = ;[1 -?q(,- w],

[unction by

Lq, s t
(5)

which is obtained by taking the nonconstitnt part of q(f),

i.e., the part that exists in the interval O S t < LT and

reflecting it about the t = LT axis. Thus, in view of (5),

Y(t) is a waveform that is nonzero in the interval

0< t S2LTb and symmetric around t= LTb. The

importance of !P(t)is that it allows definition of the

following functions which become an integral part of the

AMP representation of GMSK:

So(t) = sinv(t), S,,(t) = S~(t + nTb) = sin Y(t+nTb) (6)

Next define the 2 ‘-1 =8 distinct pulse shapes

Cl(t), i= O,l,..., 7 each of which is a product of the basic

generalized pulse shape SO(Z) and L-1 = 3 other time shifts

of SO(r) [1, Eq. (1 l)]. Finally, then the generic AMP form

for the complex envelope of GMSK is [ 1]

i.e., a superposition of eight amplitude/phase modulated

pulse streams. By virtue of the fact that some of the CK(t)’s

extend beyond Tb sec (in particular the first four in the set,

i.e., the ones with the most energy), as previously stated

the corresponding pulse streams consist of overlapping

pulses and hence contribute 1S1. Also in (7)
A j(n / 2)Ax,n

iiK,n = e is the equivalent complex (unit

amplitude) data symbol for the trth transmitted pulse in the

Kth stream whose phase (Z 12)AK,n depends solely on the

past information data sequence a[ 1].

In the AMP representation of (7). the dominant term is

the pulse stream corresponding to Co(r) (for a full response

(L= 1) CPM, e.g., MSK, it would be the only one) since its

duration is the longest (at least 2Tb longer than any other

pulse component) and it also conveys the most significant

part of the total energy of the signal. The next most

significant term would be the pulse stream corresponding

to Ct(r)which contains virtually all the remaining signal

energy. Thus, as previously alluded to, it is sufficient to

consider only the first two pulse streams in (7) and hence

forali practical purposes wc may “exactly” dcscrilx GMSK

by the complex signal

,,=-m n.-ca

where specifically



Also, it cart bc shown [hat the cqtsivalcnt complex data

symbols satisfy the rcla[ions [3 j

“~A,,,n
L~ J>

fro,,, = e - = jcr,,ii~,,, _ 1

,x ( Ioa)
A J~~l,n

iil,,l =e - = ja,,iiO,,, _~

which implies

~0,2n = {j-j}, ~0,2,1+1 E {L-1}

ti,,2n E {1$-1}, ~l,2n+I E {~l-j}
( 10b)

Note that the symbols in the two data streams alternate

(from bit to bit) between purely real and purely imaginwy

unit amplitude values. Thus, in terms of the real (bandpass)

GMSK signal we can view it as being composed of the

sum of two pulse-shaped offset QPSK-type signals with

pulse shapes corresponding to Co(t) and Cl(t) and I, Q

*1 data symbol ( T~ = 2Tb in duration) sequences

respectively corresponding to

{} {- } (,,)
ao,zn = Im tio,2n , ~0,2~+1 = Re ao,~n+]

‘1.zn ‘Re{ti12n} bl.zn+l “m{aI.Zn+l}

That is,

s(t)=&e{~@ocr}
n—

= ~ n=::0,2n+ICO(@~ + ]) Tb)COs@c?

- i bo,~nco(r – 2YtTb)sin act (12)
n=--

+ ~a],z&’l(f - 2~Tj)cos@cr
n.-m

- ~bI,~.+ICI(f ‘(zn + ])Tb)sin@ct 1
n..ca J

Kaleh [3] also shows that the effective data sequences for

the two symbol streams as defined in (10) each have

uncorrelated symbols and furthermore the two sequences

are uncorrelated with each other. It is possible to show a

stronger condition on these sequences, namely, that they

are each independent identically distributed (i.i.d.) and

independent of each other. This property will be important

in applying the average likelihood approach for obtaining

the carrier phase estimate. To see these independence

properties, it is interesting to interpret the equivalent I and

Q data sequences in ( 12) in terms of the differentially

encoded version of the [rue information sequence CZ[ l].

In par[iculnr, it is straightforward to show from the

prt)pcrllcs in ( Ioii} Ihtlt t{)r lhc Iirst pulse stream the

cquiv:tlcnt [, Q dots scqucnccs {“()~f+l}{b().~,}
Corrcsp{)nd 10 lhc odd/even split ot’ the dilfcrcntially

cncodcd version ot a with the dditi(mal constraint that

every other symbol bc inverted. [n mathematical terms. if

v~ = akvk. -lrcprcscnts the differentially cncodcd version

of ak. then

k
~{o,?k+[ ‘(–!) v~k-], bo.zk = (–l)kV~k (13)

It should be noted that the relation in ( 13) is precisely the

same equivalence between the frequency modulation

representation of MSK and its offset QPSK equivalent. For

the second ulse stream, the equivalent 1,Q data sequences

{al.zn+l}~bl.znl are obtained by first multiplying the

differential encoder output by the information bit delayed

by one bit interval before performing the odd/even split

and alternate symbol inversion, i.e.,

al,~~ = (-l)kv2kak_1 ~(-l)kw~~,
(14)

bl,zk+l = (-l)kvzk+]ak-t ‘(-l)kw2k+l

This equivalence can be seen by rewriting the second
relation in (lOa) as

‘iO,n an-I%m-2

iii,,, = ja,,iio,,,_2 == ~ zio,n_~ (15)

= Go,na,l–l

Finally, since for an i.i.d. information sequence a the

differentially encoded version of this sequence is also i.i.d.

and since multiplication by a one-bit delayed version of

the input does not destroy the i.i.d. property, we reach the

conclusions regarding the independence properties of the

symbol stream sequences given above. Based on the

entirety of the above, we conclude that GMSK can be

implemented with the superimposed offset QPSK

transmitter illustrated in Fig. 1. The two pulse shapes Co(t)

and Cl(r) as defined by (9) together with (4), (5) and (6)

are illustrated in Fig. 2.

MAP ESTIMATION OF CARRIER PHASE

Consider now the received signal y(~) composed of the

sum of s([; (3) and additive white Gaussian noise (AWGN)

n(r) where s(r; d) is given by (12) with the addition of a

uniformly distributed phase 6 included in each carrier

component. Based on an observation of y(t) over the

interval O < t < To where we arbitrary assume that To is

an even integer multiple (say K) of the bit time Tb, we

wish to find [he MAP estimate of 0, i.e., tbc value of e

that maximizes the a posterior probability p(ely(t)) or
since B is assumed to be uniformly distributccl, the value

of 0 tha[ maximizes the conditional probability p(>(t)le).

For an AWGN channel with single-siclcd noise power



spcc[ral density N(J watts/Hertz, p(y([)lO) has [hc form where C is a normal iz::[i(m ctmstant and wc have added [t)

P(y(f)lao,bi),al,b[,e)=
the conditioning nt)[ati(m the implicit dcpurdcncc of s(~; O)

on the i.id. I and Q clam scqucrvxs ofthc two pulse streams.

[
;()p (w) - S(f;e))h)

(16) For a constant cnvctopc (energy) signal such as GMSK, it
Cexp -—

is sufficient to consider only the term involving the.-
corrcla[ion of y(t) and s(r; fl) and lump the remaining
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.

.

IctmIs in[t) the normalization cons[an[.’ Thus, wc rewrite

(16)as

/)(y(r)lao, b{), al, bl, @)=

(
Ccxp ~JJ’ y(f)$(f;e)dr

No )

(17)

where for convenience we still usc C to denote the

normalization constant.

Evaluation of ( 17) for s(t; O) corresponding to a single

binary pulse stream, e.g., BPSK, with 1S1 was considered

in [5,6]. Extension of the result to an s(t; O) corresponding

to a single pair of quadrature binary pulse streams (such as

QPSK) with identical 1S1 on the I and Q channels is

straightforward and was somewhat discussed in [5]. What

we have for the AMP representation of GMSK in (12) is

two pairs of offset quadrature binary pulse streams each

pair having different amounts of 1S1. (Recall that Co(t) is

a pulse of width 5Tb and Cl(t) is a completely different

puke of width s~b.) Evaluation of (17) for such a received

signal has not been previously considered. Without

belaboring the details, following substitution of (12) into

(17) and averaging over the four i.i.d. component data

sequences ao, bo, al, bl, then after considerable

manipulation it can be shown that

P(Y(O18)=+:yh{l.(k0, e)}k~~cosh{f.(k, O,0)}

k odd k even (18)

‘k:~:COSh{~C@Il@}k~:ph{L(k! L 0)}

k even k odd

where

A 24~ KT
Ic(k,l,9)=

No
JO b r(f) cos(~cl + O)c[(r - kTb)d[

(19)
A 2~m KT

l~(k, 1,0)=
No

Jo br(t)sin(~ct + O)Cl(r - kTb)dr

Note that because of the presence of 1S1 in each of the

component pulse streams, the arguments of the hyperbolic

cosine terms involves integration over the entire

observation interval O < r S KTb rather than just integration

over a single bit interval as is customary in such problems

when 1S1 is absent. (Actually the finite duration of

C()(t-kTb) and Cl((-kTb) will truncate these

4 We note [hot for the general IS I problem as treated
in [5,6], the energy-dependent exponential term

{
exp –(l / NO)J(?) s2(t; (3)df} is not cons[ant and in fact

depcrrds on the data sequence. However, for the “exact”
representation of GMSK by the two pulse stream AMP
form, wc cm m;ike the conshmt envelope assumption and hence
ignore the energy-dependent term.

intcgra[i(ms to an intcrv:ll (depending (m the value ot’ k)

smaller than the obwrvation [imc interval but still Iargcr

[him the baud interval, ) Finally. the MAP estimate of o,

i.e., O&l,lP is the value of @ that maximims ( IS).

CLOSED LOOP CARRIER SYNCHRONIZATION
OF GMSK

As has been done many times in the past to m-rive at closed

loop carrier synchronizers based on open loop MAP

estimates, one takes the natural logarithm of the likelihood

ratio, differentiates it with respect to O and then uses this

as the error signal, e(e), in a closed loop configuration.

The reasoning behind this approach is that e(e) will be

equal to zero when 6 = OMAp and thus the closed loop

will null at the point corresponding to the open loop MAP

phase estimate. ‘I%us, proceeding in this fashion, we obtain

e(0) ~-$ In p(y(r)lf3) = k}~,(k,O,O) tanh{/C(k,O,O)}

k odd

- k>~C(k,O,@) tanh{l,(k,O,O)}

k even

+ !~~,(k,L0)tanh{lc(k, 1,8)}
(20)

kevin

- ~~~:(k,l,t?)tanh{ l$(k, 1,0)}

k odd

~ eo(b’) + e, (0)

where we have made use of the fact that from ( 19)

IC(k, 1,0) and [~(k, 1,0) are derivatives of each other.

The result in (20) suggests a superposition of two loops

each contributing a component to the error signal

corresponding to associated pulse stream in the two pulse

stream AMP representation of GMSK. Fig. 3 illustrates

the first of the two loop components (i.e., the one that

generates e.(0)) that must be superimposed to arrive at

the closed loop GMSK carrier synchronizer suggested by

the error signal in (20). A similar figure would exist for the

second loop component that generates e] (0), We offer this

scheme as the “optimum” (in the sense of being MAP-

motivated) GMSK carrier synchronizer. As is customary,

the “tanh” nonlinearity can be approximated by a linear or

hard limiter device for low and high SNR applications,

respectively. The rate at which the loop updates its carrier

phase estimate can vary from every Tb to every KTb

seconds. In the case of the latter cxtrcmc, the observation

intervals used for each cim-icr phase estimate do not overlap

and as such the loop rcprcscnts a sequential block-by-block

implementation O( the MAP open loop estimator. In the

case of the former cxtrcmc, the obscrvatiort intervals used
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for each carrier phase estimate overlap by (K – l)Tb

seconds and as such the loop represents a sliding window

MAP phase estimator.

CONCLUSIONS

Using the MAP estimation approach to carrier

synchronization of digital modulations containing 1S1

together with a two pulse stream AMP representation of

GMSK, it is possible to obtain an optimum closed loop

configuration in the same manner as has been previously

proposed for other conventional modulations with no 1S1.

We anticipate that this scheme will outperform other GMSK

carrier sync schemes that are derived in a more ad hoc

fashion. The actual performance of our scheme is currently

under investigation and will be reported on in the future.

In view of the fact that the second pulse has significantly

less energy than the first, the outcome of these evaluations

migh[ further demonstrate that a single pulse stream AMP

representation of GMSK is sufficient for satisfactory carrier

sync performance thereby simplifying the implementation.
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