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Abstract. Empirical models for the monthly and fortnightly ocean tides

are estimated using sea surface height data from repeat cycles 10 to 190 of the

TOPEX/POSEIDON (T/P) altimetry mission. Residual variances between tide gauge

observations concentrated in the Pacific Ocean and the presented T/P monthly and

fortnightly empirical ocean tide models are both of the order of 2-3 mm2. The tide gauge

residual variances from the T/P monthly and fortnightly ocean tide models are smaller

than those from the respective classical equilibrium ocean tide representations by 0.7

and 8.0 mm2, and smaller than those from the respective self-consistent equilibrium

ocean tide representations by 1.8 and 15.2 mrn2 , respectively. The principal monthly

and fortnightly ocean tide departures from equilibrium are concentrated in the Pacific

Ocean where these departures are as large as 3 and 10 mm, respectively. Long-period

ocean tide theory predicts that the relative response of the long-period ocean tides

approaches equilibrium with increasing period and this is supported by the presented

models which show that the observed monthly ocean tide has smaller relative departures

from equilibrium than the observed fortnightly ocean tide. The tide gauge comparisons

suggest that incoming T/P data will provide improvements to the presented monthly

and fortnightly ocean tide models but the most significant improvements are expected

in the monthly component. Spherical harmonic decompositions of the presented

long-period ocean tide models are provided and these ocean tide models are also used

to predict the monthly and fortnightly ocean tide contributions to respective tidal

variations of the Eart h‘s rotation rate and polar motion.
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1. Introduction

The long-period ocean tides have historically been thought to be of sufficiently long

period to have frictional effects in the oceans extensively damp the inherent dynamics of

the oceans at these periods. The lack of accurate global observations of the long-period

ocean tides has precluded any definitive evidence of the extent to which tidal currents at

these long periods are actually damped by frictional effects and the long-period ocean

tides remain a subject of continuing investigation and speculation. In the extreme case

the long-period ocean tides are simply represented by equilibrium theory [Dahlen, 1976;

Agnew and FarreU, 1978] which assumes that the ocean dynamics at these periods are so

severely damped that the long-period ocean tide response coincides, or is in equilibrium,

with the forcing equipotential surface. Theoretical and hydrodynamic analyses [e.g.

hxubnan, 1959; (%?on, 1983] argue that frictional effects cause tidal currents at

periods much longer than the monthly period to be damped to an equilibrium response

but that the two principal long-period ocean tide constituents, the monthly Mm and

the fortnightly Mf constituents, should have departures from equilibrium.

The relatively few accurate tide gauge observations of the monthly and fortnightly

ocean tides [e.g. Miller et al., 1993] indicate that the departures of these two ocean

tides from equilibrium are of the order of less than 1 cm. The small amplitudes of the

departures from equilibrium makes them especially difficult to accurately observe. More

importantly, tie long periods of these ocean tides and the increase in ocean circulation

background noise at these periods add to the difficulties involved with observing the

long-period ocean tides. The leakage of general ocean circulation noise into observations

of the long-period ocean tides is probably the dominant source for errors in these

observations [e.g. Desai et al., 1997]. Any accurate observations of the long-period

ocean tide departures from equilibrium must therefore require long durations of high

accuracy data. These observations should ultimately also have global coverage if the

observations are to be useful to many applications.
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For example, the relative roles that Rossby wave dynamics and gravity waves might

have on the Mm and Mf ocean tide departures from equilibrium are not completely

understood [e.g. Carton, 1983; Miller et al., 1993; Wunsch et al., 1998]. Also,

equilibrium representations of the Mm and Mf ocean tides are incapable of explaining

the residual energy at these frequencies in Earth rotation rate observations that have

removed the contribution from the solid Earth tides [e.g. Rolw-tson et aL, 1994].

Most studies of the long-period ocean tides include predictions of their contribution to

respective tidal variations of the Earth’s rotation rate [e.g. Agnew and FarreU, 1978;

Merriam, 1980; Carton, 1983; Dickman, 1993; Desai, 1996; Kantha et al., 1998]. If the

contribution of the long-period ocean tides and particularly the relative contribution of

their departures from equilibrium to tidal variations of the Earth’s rotation rate can be

accurately determined then the observed variations of the Earth’s rotation rate can be

used to infer anelastic properties of the Earth’s mantle at these tidal frequencies [Wahr

and Bergen, 1986; Desai, 1996].

Unfortunately, accurate observations of the Mm and Mf ocean tides have in most

part been limited to relatively few tide gauge observations. However, satellite altimetry

serves as an ideal tool to provide almost global observations of the sea surface heights

of the Earth’s oceans. Cartwright and Ray [1990] demonstrated the ability to observe

the long-period ocean tides from satellite altimetry by estimating zonally averaged

observations of the Mf ocean tide from Geosat Exact Repeat Mission (ERM) altimetry

data, and Ray and Cartwright [1994] extended this analysis by using almost two years

of Geosat ERM data to estimate zonally averaged observations of both the Mm and Mf

ocean tides. Their restriction to a zonal analysis was aimed at reducing the effects of

oceanographic and altimetric noise caused respectively by the relatively short duration

and the large measurement errors in the available Geosat ERM data. Since then the

TOPEX/POSEIDON (T/P) altimetry mission has been successfully providing sea

surface height measurements of the Eart h‘s oceans with measurement accuracies of the
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order of 4-5 cm and the duration of T/P data now extends to over 5 years.

The high accuracy and long duration of the T/P altimetry data provides the first

opportunity to develop almost global empirical models of the Mm and Mf ocean tides

without any restriction to a purely zonal analysis. This has already been demonstrated

by Desai and Wahr [1995] and Desai [1996] who respectively used almost 2 and 3 years

of T/P data (repeat cycles 10-78 and 10-110, respectively) to estimate preliminary

empirical models of the principal long-period ocean tides with unprecedented spatial

resolution. However, these preliminary results from T/P altimetry appeared to contain

extensive short wavelength noise in the long-period ocean tide estimates and error

analyses by Desai [1996] and Desai et al, [1997] suggested that longer durations of T/P

data would provide improved accuracies to the T/P-derived empirical models of the

Mm and Mf ocean tides.

Results presented here improve upon earlier results from Desai and Wahr [1995] and

Desai [1996] by using almost 5 years of T/P altimetry data to observe and empirically

estimate models for the Mm and Mf ocean tides. These most recent results are discussed

here at greater length than the previous results and the improved accuracies of these

most recent Mnl and Mf empirical ocean tide models are illustrated through tide gauge

comparisons. The present estimates of the global distribution of the Mm and Mf

departures from equilibrium are shown and zonal averages of these estimates are also

~ provided to illustrate the long wavelength departures from equilibrium. Also discussed

are the spherical harmonic decompositions of these empirically observed long-period

ocean tides. The T/P Mm and Mf ocean tide models are also used to predict their

respective contributions to tidal variations of the Earth’s rotation rate and polar motion.

2. Harmonic Representations of the Ocean Tides

The conventions used by Desai and Wahr [1995] are also used here to describe

the ocean tides. Those representations that are most relevant to this discussion are
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below. The ocean tide response (n~j (0, A, i) at a geographical point

with colatitude 0 and longitude A of an ocean tide originating with the degree n and

order m spherical harmonic component of the tide potential is expressed in terms of an

amplitude A(O, A) and a Greenwich phase G(O, ~). The long-period ocean tides originate

with the zonal component of the tide potential where n = 2 and m = O. The index j’

denotes the individual tidal components within each tidal band.

cnmj(e, ~, ~) = A(O, ~) COS (#nmj(t) – G(8$~)) (1)

dnmj(~) = ~nmjt + Pnmj + ~nmj~ (2)

The reader is referred to equations (3), (4), and (5) from Desai and Wahr [1995] for

more details about the astronomical arguments w~naj, ~nmj, and ~.mj, but Table 1 m

explicitly provides values of these arguments for some of the principal long-period tidal

constituents. The ocean tide response defined in equation (1) is often separated into the

inphase ~i(O, A) and quadrature CO(O,A) tidal components.

(; = A(O, ~) cos G(O,~) (3)

<0 = A(O, A) sin G(O, ~) (4)

Normalizing the inphase and quadrature tidal components by their respective tide

potential amplitudes H.~j provides a useful method to determine the relative response

between ocean tide components wit~in specific tidal bands and subsequently also makes

the frequency dependence of the ocean tides much more apparent. To this end the

6 A) = X(W~~j,6, J) + ‘iy(~nrnj, 6, J)complex ocean tide admittance function .Z(~~rnj, ,

[e.g. Carh.uright and Ray, 1990] serves as a useful representation of the ocean tides. For

the long-period ocean tides the convention used here to relate the admittance function

to the inphase and quadrature components is as follows.

(’(0, A) = - I JJzoj I x(~zoj, o, ~)

(0(0, A) = I HzOj I y(~zoj, ~, J)

(5)

(6)
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The tide potential amplitudes lf.~j are taken here to be defined as tabulated in

Cartwrightand Edden [1973] and are also provided in Table 1.

3. Equilibrium Long-Period Ocean Tides

Equilibrium theory ignores ocean dynamics and assumes that the response of

the oceans is coincident, or in equilibrium, with the surface of the forcing potential.

Classical equilibrium theory assumes that the long-period ocean tides have a response to

the tidal potential only, but Dahlen [1976] and Agnew and Farrell [1978] introduced the

self-consistent equilibrium ocean tide to also include the effects of the self gravitation

of the equilibrium ocean tides and the load induced deformations of the ocean floor.

The long-period tide potential is a purely zonal function and the respective equilibrium

long-period ocean tide response functions are therefore completely determined by only

the real components of the admittance function. The classical and self-consistent

long-period equilibrium ocean tide admittance functions are defined here by the

functions Z = X + i~ and 2S = X’ + i~s, respectively, where Y = ~“ = O.

X(o, A) = 0(0, A) [~,l?o+ l?] (7)

(8)

The function 0(0, A) is the ocean function of Munk and Macdonald [1960] which has

a value of 1 over the oceans and O over land, and an = [3/(2n + l)](pW/p.) where p~

and p~ are the mean densities of the ocean and Earth, respectively. The body Love

number factor 72 = (1 + kz – h2) and load Love number factors 7: = (1 + k: – h:)

account for the effect of ocean bottom displacements caused respectively by the body

tides and the load tides in the solid Earth and the additional potential that results from

these displacements. The functions pn~ (COS0) are the normalized associated Legendre

functions of degree n and order m. Refer to equation (6) of Desai and Wahr [1995] for

the normalizing factor used here for the Legendre functions. The constants K and ~“



are introduced to impose the conservation

admittance functions.

/x(oj~)sine~e~J =

of mass on the two equilibrium ocean tide

Note that 72 and y; are the only source for any frequency dependence in the long-period

equilibrium admittance functions. There are small frequency dependent effects caused

by mantle inelasticity at the long periods [Wahr and Bergen, 1986], but for the most

part these are small enough to ignore [e.g. Wahr, 1981]. The long-period equilibrium

admittance functions can therefore be assumed to be identical for all of the long-period

tidal components.

The self-consistent equilibrium ocean tide is dependent on the load that it exerts

on the solid Earth which is represented by the second term in equation (8) where X;

are the spherical harmonic components of the self-consistent equilibrium ocean tide X’

itself. Equation (8) is then easily solved through an iterative process that is described

by Ray and Cartwright [1994, appendix]. Figure 1 illustrates the global distribution

of the classical and self-consistent long-period equilibrium ocean tide admittance

functions. The classical equilibrium ocean tide admittance is a purely zonal function

over the oceans. The self gravitation and load deformations of the ocean tide introduce

some longitudinal variability to the self-consistent equilibrium ocean tide admittance

function and also tend to amplify the classical equilibrium ocean tide admittance by

approximately 18Y0.

4. TOPEX/POSEIDON Data Reduction and Analysis

Data from the Version C T/P Merged Geophysical Data Records (MGDRs)

[AVISO/Altimetry, 1996] are used to empirically estimate the ocean tide models

presented here. Environmental corrections for the range delays caused by the wet and

dry troposphere, the ionosphere, and the sea state, and geophysical corrections for the
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solid Earth tide, the pole tide, the mean sea surface, and the static inverse barometer

response are all applied to the raw T/P MGDR sea surface height data. In addition,

a correction for the equilibrium long-period ocean tides originating with the degree 3

tide potential are also applied to the data because the degree 3 tide potential has a

monthly component with an amplitude that is of the order of 10?lo of the amplitude of

the principal monthly component of the degree 2 tide potential.

Similar methods to those adopted by Desai and W’ahr [1995] and Desai [1996] are

adopted to estimate the T/P Mf and Mm empirical ocean tide models and are therefore

only summarized here. The ocean tide models are estimated from collinear differences

of data from T/P exact repeat cycles that are spaced 2 cycles apart using data from

both the solid state altimeter and the dual frequency altimeter from repeat cycles

10 to 190 of the T/P mission. The diurnal and semidiurnal ocean tides are modeled

by smooth response functions, and the long-period ocean tides are modeled by three

constant response functions that are centered about the monthly Mm, fortnightly Mf,

and termensual (9 day) Mt tidal components. The Mm, Mf, and Mt response functions

assume a constant response between 22, 25, and 40 tidal components with frequencies

that range from 0.02854986 to 0.04450524 cycles per day (cpd), 0.06286947 to 0.07897221

cpd, and 0.09642334 to 0.14607968 cpd, respectively. The tidal components included

in these three long-period tidal bands are chosen to be all of those components defined

in the tide-generating potential of Cartwright and Edden [1973] that respectively have z

the same group number as the principal Mm, Mf, and Mt tidal components, where

the group number is the combination of the first two digits of the Doodson number

of the individual tidal components. The Mt tidal band also includes all of those tidal

components that have the same group number as the Mq (7 day) tidal component

which has a Doodson number of 093.555. The harmonic response at each of the annual

and semiannual frequencies are also simultaneously estimated along with the diurnal,

semidiurnal, and long-period tidal response functions. The oceans have a strong



10

seasonal response to atmospheric forcing at the annual and semiannual frequencies

and in the altimetric sea surface height measurements these seasonal responses are

indistinguishable from the respective long-period tidal response at these two frequencies.

The estimated harmonic response at the annual and semiannual frequencies therefore

includes both contributions.

Each of these 7 response functions defined by a total of 22 parameters are

simultaneously estimated in geographical bins of size 360° / 127 in longitude and 1°

in latitude, and subsequently smoothed and interpolated to a I by 1° degree grid.

The Mf and Mm empirical ocean tide models presented here are therefore only two

specific components of an empirical ocean tide model that also includes models for the

diurnal and semidiurnal ocean tides. The tidal response functions that are estimated

directly from the T/P data actually represent the elastic ocean tides since no load tide

corrections were applied to the T/P sea surface height data. The elastic ocean tide

refers to the sum total of the pure ocean tide and the associated load tide. The 1

by 1° gridded elastic ocean tide estimates are separated into the ocean tide and load

tide contributions using the iterative spherical harmonic procedure that is outlined in

Cartzuright and Ray [1991, appendix].

The estimation strategies of Desai and Wahr [1995] and Desai [1996] summarized

above have also been modified in this analysis to allow each altimetric sea surface

1 height observation to contribute to the elastic ocean tide estimates in each of the four

surrounding bins. This is accomplished by spatially weighting each data point according

to its distance from the center of each bin while ensuring that each sea surface height

data point continues to have a unit weight to the global ocean tide model by normalizing

the spatially determined weights. Tide gauge comparisons indicate that this strategy

provides small improvements to the estimates of the principal semidiurnal ocean tide

components, especially the M2 component, but has little effect on the estimates of the

diurnal and long-period ocean tides.



11

5. Tide Gauge Comparisons

The most significant Mf and Mm ocean tide departures from

in the Pacific Ocean and the set of 17 Mm and 24 Mf tide gauge

equilibrium occur

observations from

Miller et al. [1993] which are concentrated in the Pacific Ocean within the longitudes

140”E and 250”E and latitudes 30°S and 30”N provide useful comparisons for the

respective ocean tide models that are estimated from T/P altimetry. Miller et al.

[1993] use long durations (3 to 65 years) of tide gauge data to observe the two principal

long-period ocean tides and these long durations should significantly reduce errors in

their observations that could have otherwise been caused by oceanographic noise at

these long periods. Error estimates are also provided with the Miller ei! al. [1993] tide

gauge observations and Figure 2 shows how the T/P tide model estimated from repeat m

cycles 10 to 190 of the T/P mission, and the two equilibrium ocean tides compare with

these tide gauge observations. Note that the tide gauges are numbered in Figure 2 to

have increasing tide gauge numbers correspond to decreasing latitudes of the tide gauge

locations.

In most cases the T/P models lie within the error bars of the tide gauge

observations. However there are some distinct outliers that may possibly be caused

by errors in the tide gauge observations themselves. The tide gauge observations at

Apia (Mm tide gauge 15 and Mf tide gauge 19 in Figure 2) have been designated as

“suspicious” by Miller et al. [1993] and the large difference with the T/~ observations

of the Mm amplitude and Mf phase certainly suggest that this tide gauge observation

may be in error. The tide gauge observation of the Mm phase at Midway (Mm tide

gauge 1 in Figure 2) has an uncertainty of +180° and is therefore of limited use in

these comparisons. However, the amplitude of the T/P Mm model agrees to within the

error bar associated with the tide gauge observation at Midway. The Mm tide gauge

observation at Noumea (Mm tide gauge 17 in Figure 2) has an unexplained anomalous

phase that is more than 90° out of phase with respect to the T/P model, but again
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agrees to within the specified uncertainties of the corresponding observed amplitude.

The convergence of the T/P Mm and Mf ocean tides is also illustrated here by

comparing the tide gauge observations to T/P models that successively use 10 additional

repeat cycles of T/P altimetric data when estimating the ocean tide models, beginning

with a model that uses repeat cycles 10 to 50 and ending with a model that uses

repeat cycles 10 to 190. Figure 3 shows the residual variances between these 15 T/P
M

tide model estimates and 14 Mm and 23 Mf tide gauge observations from Miller et al.

[1993]. The anomalous Mm tide gauge observations at Apia, Midway, and Noumea,

and the Mf tide gauge observations at Apia, are excluded from the computed residual

variances. Table 2 provides the root-mean-square (rms) of the differences between the w

tide gauge observations and the cycle 190 T/P ocean tide models. For clarity it should

be mentioned that these convergence figures appear to differ slightly to those from Desai

et al. [1997] because the T/P long-period ocean tides presented here are smoothed more

extensively than they were in the results presented by Desai et al. [1997]. This results

with much smaller residual variances in the earlier repeat

models, but with only minimal reductions of the residual

cycle models.

cycle (before cycle 110) T/P

variances in the later repeat

As was also demonstrated by Desai et aL [1997], the T/P long-period ocean tide

models continue to converge towards the tide gauge observations as longer durations of

data are used to estimate these ocean tides. Comparing the residual variances from the

cycle 50 and the cycle 190 T/P models shows that the residual variance of the inphase

and quadrature components of the Mm component are respectively reduced from 8.16 to

3.07 mm2 and 6.27 to 2.27 mm2. This represents a respective decrease from 29 to 11%

of the observed inphase variance, and 127 to 46% of the observed quadrature variance.

The T/P models only begin to reduce the observed Mm quadrature variance after at

least repeat cycles 10 to 70 are used to estimate the empirical models. Similarly the Mf

inphase and quadrature residual variances are reduced from 4.83 to 2.75 mm2 and 7.21
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The reason for the increase in the
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16% of the respective observed tide gauge variances.

residual variance of the Mm inphase component

starting from the cycle 170 model, and the Mf quadrature component between the

cycle 160 and cycle 180 models is not understood. It is however reassuring that the

Mf quadrature residual variance from the cycle 190 model has decreased towards the

respective cycle 150 residual variance and is perhaps an indication of future reductions

for the Mm inphase residual variance. Even with these anomalies the cycle 160 to cycle

190 Mm and Mf residual variances are all still of the order of 2-3 mm2. Of significance

is the fact that with the exception of the anomalous increases in residual variances

mentioned above the trends in Figure 3 of decreasing residual variance with increasing

data duration suggest further improvements to both the Mm and Mf T/P ocean tide

models, but especially the Mm model, from future additions of T/P data.

Also shown in Figure 3 are the tide gauge residual variances with respect to the

two equilibrium ocean tides. Of course, since the two equilibrium ocean tides do not

have a quadrature component they do not remove any of the observed variance of the

quadrature component of the long-period ocean tides. In contrast the T/P long-period

ocean tide models are reducing the observed quadrature variance of both the Mm

and Mf tidal components and therefore provide better representations of the observed

departures from equilibrium. For example, although the Mm inphase residual variance

from the cycle 190 T/P model is approximatelyjl.2 mm2 larger than the respective

residual variance from the classical equilibrium ocean tide, the cycle 190 T/P model is

accounting for approximately 2.6 mm2 of the observed Mm quadrature variance while

the classical equilibrium ocean tide cannot account for any of the observed quadrature

variance. The phase comparisons in Figures 2 (b) and (d) are are also quite significant

because the T/P models, and especially the T/P Mf model, reflect the latitudinal

variations in Greenwich phase angle that are observed by the tide gauges. Meanwhile,

using the definition provided in equation (1), the equilibrium ocean tides have a
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Greenwich phase of 0° at the latitudes of the tide gauge sites since at these latitudes they

have a positive

means that the

of the Mm and

inphase component and a zero quadrature component. This implicitly

T/P models at the very least reflect the observed latitudinal departures

Mf ocean tides from the equilibrium response.

Figures 2 (a) and (c) show that the amplitudes from the classical equilibrium ocean

tides have smaller differences with the tide gauge observations and the T/P model

estimates than do the amplitudes from the self-consistent equilibrium ocean tides.

Overall, the T/P Mm and Mf tide gauge residual variances are 0.7 and 8.0 mm2 smaller

than those from the respective classical equilibrium ocean tides, and 1.8 and 15.2 mm2

smaller than those from the respective self-consistent equilibrium ocean tides. The

inherent dynamics of the ocean tides are probably acting as an opposing force to the

effects of self-gravitation and loading and causing the true long-period tidal response to

appear closer to the classical equilibrium response than the self-consistent equilibrium

response. This is certainly supported by the fact that the effect of the ocean dynamics

is likely to be stronger at the shorter fortnightly period than at the monthly period and

therefore causing the much larger differences between the observed Mf response and its

respective self-consistent equilibrium response than in the respective differences for the

Mm component.

6. Zonally Averaged Admittance Functions

The long-period equilibrium ocean tides are principally zonal functions and Figure

4 compares the zonal averages of the equilibrium ocean tide admittance functions to the

zonal averages of the cycle 190 T/P Mm and Mf ocean tide admittance functions. The

Mm real admittance shows better agreement with the classical equilibrium admittance

than the self-consistent equilibrium admittance in the southern and northern latitudes,

but the opposite is true in the mid-latitudes between 20°S and 20”N. In contrast the

Mf real admittance has better agreement with the classical equilibrium admittance in
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all latitudes. These results are similar to earlier results from Desai and Wahr [1995]

and Desai [1996]. However, the results from Desai and kVahr [1995] and Desaz’ [1996]

displayed a flattening of the Mm real admittance south of 55°S which is not apparent in

the results shown here, and for that matter is not apparent in the Geosat results from

Ray and Cartwright [1994].

The zonal averages of the T/P imaginary admittance functions certainly support

long-period tidal theory in that the departures from equilibrium decrease with increasing

tidal period, with the Mf imaginary admittance function having amplitudes that are

approximately a factor of 2 times larger than the Mm imaginary admittance function.

Each of the T/P Mm and Mf imaginary admittance functions tend towards negative

admittances south of 40°S which increase in magnitude with decreasing tidal period.

Of importance also is the fact that the Mm imaginary admittance function appears to

be of slightly smaller amplitude than respective results presented by Desai and Wahr

[1995] and Desai [1996]. This is most probably the result of longer durations of data

being able to reduce the effect of background noise at these long periods.

For comparison, the zonal averages of the Schwiderski [1980a, b] hydrodynamic

models (hereinafter referred to as the SCH models) of the Mm and Mf ocean tides are

also provided in Figure 4. The T/P and SCH real admittance functions have reasonable

agreement in most latitudes. However, in the extreme southern latitudes the T/P Mm

real admitt ante function is smaller by approximately 570, and the Mf real admit t ante

function is larger by approximately 10%, than the respective SCH models. In the

extreme northern latitudes the T/P Mm real admittance does not exhibit the large drop

between 50”N and 60”N that is apparent in the respective SCH admittance, but instead

has a drop at approximately 62”N. In the extreme northern latitudes the T/P Mf real

admittance is smaller by approximately 10VOthan the respective SCH admittance.

The zonally averaged T/P Mm imaginary admittance function is of the order of

o-5% in most of the latitudes and is at least a factor of 2 smaller than the respective SCH
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admittance function which is of the order of 3-1 l% in the same latitudes. These results

indicate that the SCH model predicts much larger Mm departures from equilibrium

than are observed by the T/P altimeter. The Ray and Cartwright [1994] Geosat results

also tend to have smaller Mm imaginary admittances than the SCH model, but also

have a larger drop in the imaginary admittance north of 20”N which is not apparent in

the respective T/P admittance function. In contrast to the Mm imaginary admittance

functions, the T/P and SCH Mf imaginary admittance functions have much better

agreement except in two specific regions. The first region is the latitudes between 40° S

and 15°S where the T/P Mf imaginary admittance function is larger by approximately

3-5% than the respective SCH admittance function. The second region is in the latitudes

north of 50° N where the T/P models predict a much more gradual decrease of the Mf

imaginary admit tance beginning at about 54° N in cent rast to the comparatively sharp

drop in the respective SCH admittance function at approximately 62”N. The Geosat

results from Ray and Cartwright [1994] also exhibit similar differences with the SCH

model in the Mf imaginary admittance between 50°S and 15°S, and north of 50”N.

7. Spatial Distribution of Departures from Equilibrium

The zonal averages in Figure 4 demonstrate that the T/P Mm and Mf real

admittance functions are indeed observing the dominant long wavelength zonal

distribution that is expected from long-period equilibrium ocean tide theory, but it

is the departures from equilibrium that are of particular interest to studies of the

long-period ocean tides. The geographical distribution of the departures of the T/P

long-period ocean tides from the equilibrium response are illustrated by constructing

the vector differences AZ(ti20j, 0, A) between the T/P ocean tides admittance functions

Z(u20j, 0, A) and the self-consistent equilibrium ocean tide admittance 2S(~20j, 0, A).
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Plate 1 shows both themagnitude of the vector difference ] Az(~20j,o,~) ], and the
m

phase of the vector difference G.,

(11)

where the bias of the phase by T is included only to have GZ be defined in a similar

convention to the Greenwich phase G [e.g. equation (13) of Desai and Wahr, 1995].

Of immediate concern from Plate 1 are the short wavelength features in the

departures from equilibrium. Similar plots for the T/P Mt ocean tide also exhibit

short wavelength features. These features tend to become much more extensive as the

amplitude of the tidal component becomes smaller with the short wavelength features

being most extensive in the Mt component, reducing somewhat in the Mm component,

and being least extensive in the Mf component. This is especially obvious when

comparing the Pacific Ocean phase angles of the departures from equilibrium where

the largest amplitude Mf component has comparatively evenly distributed phase angles

while the Mm component has extensive short wavelength structure in the phase angle

maps. Therefore, these short wavelength features are likely to be caused by the fact

that the smaller amplitude ocean tides are more difficult to observe from the available

T/P altimetric sea surface height measurements.

The results in Plate 1 do however still provide some insightful results. Foremost

is the fact ‘that both the Mm and Mf ocean tide departures from the equilibrium

occur principally in the Pacific Ocean. Again, it is evident that the departures from

equilibrium become smaller with increasing tidal period. The global mean of the

magnitude of the vector differences are 6.6 and 8.19’0for the Mm and Mf ocean tides

respectively. In the Pacific Ocean the Mm departures from equilibrium are mostly of

the order of 2-1O% while the Mf departures from equilibrium are mostly of the order of

8-16%. In the Southern Ocean the departures from equilibrium are larger than 14% for

the Mf ocean tide but smaller by at least a factor of two for the Mm ocean tide in the
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same region. Also, the Mm and Mf departures from equilibrium have a similar feature

of amplitude 2-470 in the Indian Ocean which

the African and Australian coasts.

The spatial distribution of the Mf phase

extends south to the oceans just south of

angles G= compared to those for Mm

probably most clearly demonstrate the similarities in the response of the long-period

ocean tide departures from equilibrium in the Pacific and Indian Oceans. Similar Pacific

Ocean phase angles are also somewhat apparent in the Mt component. Plate 1 (c) and

(d) also show how the departures from equilibrium have smaller phase angles in the

longer period monthly component than in the fortnightly component. The phase of the

vector differences with equilibrium are of the order of 90 – 150° for Mf in almost all of

the Pacific Ocean, but the respective phases for Mm range between 30 – 120°. Also,

in the Indian Ocean where the departures from equilibrium are not as significant as in

the Pacific Ocean the Mm phase angles are mostly of the order of 60 – 90° but increase

slightly to about 120° for Mf. Of note is the fact that the Mf vector differences in the

Southern Ocean southwest of Australia are almost in the opposite direction to those in

the Pacific Ocean and range from –60 to – 120°.

8. Spherical Harmonic Decomposition

The long-period equilibrium ocean tides are dominated by a second degree zonal

spherical harmonic component and a comparison with the respective component of

the long-period ocean tides observed by T/P provides insight into the principal long

wavelength departures from the equilibrium responses. Following the conventions of

Desai and Wahr [1995], the spherical harmonic decomposition of the long-period ocean

tides is expressed as,

(12)
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where equations (28), (29), (34), (35), (36), and (37) from Desai and Wahr [1995] relate

the spherical harmonic coefficients C; and phase lags xfi to the inphase and quadrature

components of the ocean tides. Equation (38) from Desai and Wahr [1995] also relates

the phase angles xfi to the conventions adopted by C’hristodouhdis et al. [1988]. All

spherical harmonic decompositions provided here impose the conservation of mass on

the ocean tide models by subtracting a constant mass over the global oceans.

The T/P observations are limited to the oceans within the latitudes of +66”

and assumptions must be made about the tidal response of the oceans in those polar

latitudes not sampled by the T/P altimeter before the T/P models can be decomposed

into their spherical harmonic components. Here, the tidal response in these unsampled

polar latitudes is assumed to be zero, or modeled by the Schwiderski [1980a, b] , classical

equilibrium, or self-consistent equilibrium ocean tide models (hereinafter referred to as

the SCH, CEQU, and SCEQU models). These four variations of the T/P models will

be referred to as the T/P only, T/P+SCH, T/P+ CEQU, and T/P+ SCEQU models,

respectively. Figure 5 illustrates the effect on the second degree spherical harmonic
M

coefficients C’~oand XJOof each of these four models from the successive addition of

10 repeat cycles of T/P data into the estimation of the T/P ocean tide models. For

comparison, the coefficients from the CEQ[J and the SCEQU models are also provided

in Figure 5. Table 3 then uses the C~o and X;. estimates from the cycle 150 to cycle m

J 190 T/P tide models to compute statistics on the scatter of these estimates, and Table

4 compares the C~ and x~O coefficients from the four variations of the repeat cycle 190 -1

T/P long-period ocean tide models to those from some other models.

The standard deviations provided in Table 3 might be considered as the la errors

caused by errors in the T/P ocean tide models themselves, while the difference between

the mean values from the four variations of the T/P models quantify errors caused by

the uncertainties of the tidal response in the polar latitudes not sampled by the T/P

altimeter. Errors in the empirical T/P Mf ocean tide model appear to be at least an
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order of magnitude smaller than the uncertainties of the unsampled polar latitude Mf

response. In contrast, errors in the empirical T/P Mm ocean tide model are of a similar

order of magnitude as the uncertainties of the unsampled polar latitude Mm response.

Although the T/P altimeter samples approximately 94% of the oceans the

remaining unsampled regions have a significant impact on the second degree spherical

harmonic components of the long-period ocean tides. Accounting for a non-zero tidal

response in the unsampled polar latitudes tends to amplify the C~O coefficients of the

Mm and Mf tidal components by at least 34% and 27%, respectively. The respective

impact on the phase angles X~Ois most significant in the Mf component where the phase

angles are altered by more than 3°. This significant impact from the unsampled polar

latitude oceans can be attributed to the fact that the real admittance -X(wzOj) of the

long-period ocean tides in these unsampled latitudes is likely to be dominated by a zonal

distribution which is also likely to be of the order of 40-50% and is therefore of larger

amplitude than the respective admittance in the oceans that are sampled by T/P.

The 10 scatter of the Mf C& and x$O coefficients is much smaller than those for

the respective Mm coefficients and is further evidence that the Mf ocean tide is better

determined from T/P altimetry than the Mm ocean tide. The C’~ coefficients appear to

be nearly constant, as a function of the number of repeat cycles, for Mf in comparison

to the apparent slope for Mm. It is nevertheless encouraging that the slope of the Mm

CA coefficients appears to be tiecreasing as additional data are included into the tide

model estimates, and the Mm C~o coefficients appear to be converging towards a value

that lies in between those from the classical and self-consistent equilibrium ocean tides.

Figures 5 (a) and (c) support previous results in that the T/P models have a

response that is closer to the classical equilibrium response than the self-consistent

equilibrium response, and in that the dynamics of the long-period ocean tides tend to

act as an opposing force to the effects of self-gravitation and load induced deformations.

The effects of self-gravitation and loading tend to amplify both of the Mm and Mf CA
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coefficients by 18’?lo,but the effects of the ocean dynamics tend to reduce the amplitude

of these coefficients by approximately 8-1470 for Mm and 10-1970 for Mf. These results

are again consistent with the expectation that the effect of ocean dynamics should be

larger at the shorter fortnightly period than at the monthly period. Since the Mm

departures from equilibrium are smaller than those for Mf, the phase angles jy~Ofor Mm

which range from 175 – 178° are closer to the equilibrium values of 180° than are the

phase angles for Mf which range from 162 – 170°.

The zonal averages illustrated in Figure 4 suggest that the long wavelength response

of T/P Mm ocean tide is slightly closer to that of the CEQU model than to those of

the SCH and SCEQU models. In contrast the long wavelength response of the T/P Mf

model is closer to that of the SCH model than to those from the equilibrium models.

As such, the long wavelength component of the unsampled polar latitude response is

probably best approximated by the CEQU model for Mm, and by the SCH model for

Mf. This is to some extent evident in the results presented in Table 4 where the CA and

Xh coefficients from the SCH and T/P+SCH Mf models are quite similar in comparison

to those from the respective Mm models.

9. Long-Period Tidal Variations of the Earth Rotation Vector

The redistribution of the mass of the oceans due to the ocean tides causes tidal

variations in the inertia tensor of the Earth, and the tidal currents cause tidal variations

in the relative angular momentum of the oceans with respect to the solid Earth.

These variations must be accompanied by corresponding tidal variations of the Earth’s

rotation vector in order to conserve the angular momentum of the solid Earth and the

oceans [e.g. Wahr, 1982; Gross, 1992]. These changes to the Eart h‘s rot at ion vector are

observed both by changes in the Earth’s rotation rate and polar motion.

Using a body-fixed right-handed coordinate system with x-axis pointing towards

the Greenwich meridian, and y-axis towards 90”E, the small perturbations to the Earth’s
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inertia tensor are defined by c~j(t). Only the elements ci3(t)(i = 1,3) contribute to tidal

variations of the Earth’s rotation vector, and these mass contributions are dependent

only on the ocean tide heights <(0, A, t) (see equation (l)),

C(t) = C13(l!) + ‘iC23(t)

= -PwR4~2=~=c(ey~> t)sin20cosfl.’’dod~ (13)

c33(t) = pwR’J2*J” ~(0, A, t) sin3 (hMch (14)

where R is the mean equatorial radius of the Earth.

The variations of the relative angular momentum of the oceans hi(i!)(i = 1,3)

define the motion contribution to tidal variations of the Earth’s rotation vector and are

determined from the southward u(6, J, t) and eastward v(6, J, t) tidal currents.

(15)

(16)

The complex function F(O, A, i) is defined as follows.

F(6, ~,t) = (iu(O, ~,t) – v(O, A,i) cos O)ei~ (17)

The tidal currents are assumed to be constant through the column of water of depth

H(O, A). Here: the tidal currents are approximated through the application of finite

differences of the tide height models into the frictionless Laplace tidal equations [e.g.

Hough and Newton, 1897], similar to the procedure adopted by Ray et al. [1994] and

Chao et al. [1995] on tide height models of the diurnal and semidiurnal ocean tides.

The numerical implementation of the frictionless Laplace tidal equations results with

apparent singularities that occur near the equator for the long-period ocean tides. These

are overcome through the linear interpolation of the tidal currents across these critical

latitudes [e.g. Ray et al., 1994; Desai, 1996].
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9.1. Variations of Earth’s Rotation Rate

If 0 is defined to be. the mean rotation rate of the Earth then the incremental

rotation rate m3fl caused by the ocean tides are interpreted either by variations in the

length of day AA where A. = 86400 sec is the nominal length of day, or by variations in

Universal time UT1 with respect to the reference atomic time standard TAI.

AA(t) = cZ(UT1-TAI)
ms = –-————

A. di
(18)

rn3 = --x3 (19)

x3(t) = — 0.756flc33(t) + h3(t)]&J (20)

The Earth rotation rate excitation function is X3 [Wahr, 1982; Wahr, 1983] where Cm is

the polar moment of inertia of the mantle.

The long-period tidal variations of the Earth’s rotation rate are parameterized here

in terms of inphase UT$ and quadrature UTC variations in UT1 for each tidal component.

(UT1-TAI) = W!’. cOs(#nmj(t)) + UT. sin(+~~j(t)) (21)

Figure 6 illustrates the predicted contributions to variations in UT1 from the T/P+SCH l-l

Mm and Mf ocean tides as a function of the duration of T/P data used to estimate the

T/P tide height models. Tables 5 and 6 then compare the variations in UT1 predicted ~

by the two equilibrium, and the three global variations of the cycle 190 T/P Mm and

Mf ocean tide models to those from some other studies. It should be mentioned that the
J

two equilibrium models have no motion contributions to variations in UT1 because they

implicitly have no tidal currents. Of course, the inphase mass contributions from the

long-period ocean tides to UT1 variations represent the largest contributions because CM

is proportional to the second degree zonal spherical harmonic component of the ocean

tides and the long-period ocean tides are dominated by an inphase second degree zonal

spherical harmonic component.

Also provided in Tables 5 and 6 are the statistics of the scatter in the predicted UT1

variations from the cycle 150-190 T/P+SCH models. The 10 scatter of the predicted



24

UT1 variations for Mmarealmost 3-4times larger than those for Mfand the predicted

MmUTl variations are therefore not as well determined asthosefor Mf. Similarly, the

larger scatter of the motion contributions compared to the mass contributions show that

the motion contributions are generally not as well determined as the mass contributions.

The larger scatter in the motion contributions is likely to be caused by the fact that the

short wavelength errors in the T/P ocean tide height models are amplified in the tide

height finite differences that are used to compute the tidal currents.

The Kantha ei! al. [1998] model is a hydrodynamic model that assimilates an earlier

version of the cycle 130 T/P model presented in this study and tidal currents are a

direct product of the applied hydrodynamic equations of motion. Yet, it predicts Mf

motion contributions to UT1 that are within 3ps of the respective cycle 190 predictions

from this study. In contrast the Mm motion contributions differ by as much as 25ps in

the quadrature component. To some extent this demonstrates the remarkable ability to

approximate the tidal currents from the linear application of Laplace’s tidal equations

to a tide height model as long as the tide

short wavelength errors. These results of

errors in the T/P Mm ocean tide model.

height model is not significantly corrupted by

course underscore existing short wavelength

The substitution of the CEQU or SCEQU tides for the SCH tides in the unsampled

polar latitudes has a minimal effect of the order of 3-6ps on the predicted Mm UT1

variations. However, the effect on the predicted Mf UT1 variations is larger and of the

order of 10-15ps. Since the unsampled polar latitude Mm and Mf responses are probably

best approximated by the CEQU and SCH models, respectively, the contributions of

these two ocean tides on respective tidal variations in UT1 are probably best predicted

by values from the T/P+CEQU Mm and the T/P+SCH Mf models.

9.2. Variations of Polar Motion

Gross [1992] notes that observatories located on the surface of the Earth make
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observations that more nearly coincide with the motion of the figure axis, rather than

the rotation axis, in the body fixed frame. If the reported pole is defined by the complex

function p(i) = pl + ip2(i) with real (pl ) and imaginary (p2) parts that are positive

towards OOEand 90”E longitudes, respectively, then the equation of motion that defines

p(t) is,

P(t) + ;;p(t) = x(t)

1“” [W+hdX(i) = (c _ A)Q 1.44

(22)

(23)

where X(t) is the polar motion excitation function [Gross, 1992; Gross , 1993; Wahr,

1982]. The mean polar and equatorial moments of inertia of the Earth are C and

A, respectively, and UOis the Chandler wobble frequency with period T = 434.45

sidereal days and dissipation factor Q of 170, where cro = (27r/T)[l + i/2 Q]. It should

be cautioned that equation (22) can only be used to predict polar motion when the

excitation function has frequencies that are not close the free core nutation frequency

of -1-1 /433.2 cycles per sidereal day, and suffices for predictions of the long-period tidal

variations in polar motion.

The reported polar motion is separated into prograde and retrograde components,

with amplitudes Ap and A,, and phase lags aP and a,, respectively [e.g. Gross, 1993],

p(t) = APei”Pe i~nmj(~) + AreifYre-i&amj(~) J (24)

Figure 7 illustrates the Mm and Mf polar motion predictions. For the sake of clarity m

only the cycle 150 to cycle 190 T/P+SCH models are shown. Tables 7 and 8 then
~

provide explicit values for the Mm and Mf polar motion predictions from the various

T/P models, and from the Brosche et aL [1989] and Dickman [1993] models.

It is interesting to note how the mass and motion contributions to tidal variations

in polar motion are generally perpendicular to each other. Both the prograde and

retrograde long-period polar motion components have contributions from the motion
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component that are of comparable amplitude to the mass component. The motion

contributions would be expected to have a larger scatter than the mass contributions

because of errors from the short wavelength noise in the T/P models. However, the

scatter of the mass and motion contributions are actually quite similar and both of the

order of 5- 10 microarcseconds (pas) in amplitude, and of the order of approximately

10° in phase. The exceptions are the predicted Mm prograde mass, and retrograde

motion contributions which appear to have a particularly larger scatter in their phase

angles of the order of 30°, but these are probably associated with their much smaller

amplitudes.

The polar motion predictions from the various forms of the T/P ocean tide models

have amplitudes that are at least a factor of 3 times larger than the predictions from the

two equilibrium ocean tide models. Comparison of the predicted polar motion variations

from the T/P+SCH models to those from the T/P+CEQU and T/P+ SCEQU models

provides an indication of the contribution from the tidal heights and currents in the

polar latitudes not sampled by T/P. The mass contributions from the unsampled polar

latitudes are reduced by more than 10 pas in the Mm component, and increased by

at least 5 pas in the Mf component when the SCH ocean tides are substituted by the

equilibrium ocean tides in the polar latitudes. Meanwhile, the most significant effect of

the different polar latitude motion contributions is in the Mm retrograde predictions

which are increased by more then 20 pas when the SCH tides are replaced by the

equilibrium tides.

It appears that the polar motion predictions are much more sensitive to the

increasing duration of available T/P data than the UT1 predictions, but this is probably

caused by the fact that the UT1 predictions are essentially dominated by the principal

long-wavelength response of the long-period ocean tides. However, the increasing

duration of data has certainly reduced the scatter of the polar motion predictions quite

significantly, and even longer durations of T/P data are certainly required to reduce the
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uncertainties of both the predicted mass and motion contributions to long-period tidal

variations in polar motion. The long-period tidal response in those polar latitudes not

sampled by the T/P altimeter are also important to polar motion predictions and cause

uncertainties in the polar motion predictions that are of similar or larger amplitude

than the uncertainties in the predicted contributions from the T/P models.

10. Conclusion

The presented models of the Mnl and Mf ocean tides that have been estimated

from almost 5 years of T/P sea surface height data show that the principal departures

of the long-period ocean tide response from an equilibrium response occur in the Pacific

Ocean. Comparisons of the T/P models to tide gauge observations that are concentrated

in the Pacific Ocean show that the tide gauge residual variances from the T/P models

are smaller than from either of the respective classical or self-consistent equilibrium

ocean tides. Since the equilibrium ocean tides do not have a quadrature component a

significant portion of the smaller residual variances from the T/P models than from the

equilibrium models is due to the ability of the T/P models to observe the quadrature

component of these two long-period ocean tides.

Tidal theories have predicted that the long-period ocean tide departures from

equilibrium decrease with increasing tidal period and this is supported by the fact

that the T/P models observe smaller relative departu~es from equilibrium in the Mm

component than in the Mf component. The T/P Mm and Mf ocean tide models show

better agreement with the classical equilibrium ocean tide than the self-consistent

equilibrium ocean tide but this phenomenon is most likely caused by the opposing effect

of the ocean dynamics with respect to the effects of self-gravitation and loading. The

T/P Mf ocean tide shows similar long-wavelength departures from equilibrium as does

the respective Schwiderski [1980a, b] model. In contrast, the T/P Mm model shows

significantly smaller departures from equilibrium than does the respective Schwidemki
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[1980a, b] model, and the T/P Mm model might even be considered to have a response

that is closer to the respective classical equilibrium ocean tide than it is to the respective

Schwiderski [1980a, b] ocean tide.

A comparison of the presented models to earlier versions from Desai and Wahr

[1995] and Desai [1996] demonstrates how using longer durations of T/P data to

empirically estimate models for the Mm and Mf ocean tides tends to reduce the extent

and magnitude of short wavelength errors in these models. These short wavelength

errors are still quite apparent in the T/P Mm empirical ocean tide models. Fortunately,

the presented tide gauge comparisons also suggest that future additions of incoming

T/P data are likely to provide further improvements to both of these ocean tide models,

but especially to the Mm ocean tide model.

The uncertainties of the Mm and particularly the Mf ocean tides in the polar

latitudes not sampled by the T/P altimeter appear to be the dominant source for errors

in some global applications of these two long-period ocean tides, such as spherical

harmonic decompositions and predictions of the contributions that these ocean tides have

on tidal variations of the Earth’s rotation rate. In the case of polar motion predictions,

the uncertainties in the contribution from the tidal response in these unsampled polar

latitudes appear to be of a similar order of magnitude as the uncertainties from the

contributions predicted by the T/P models. However, the classical equilibrium Mm and

Schwiderski [1980a, b] Mf ocean tides probably serve as reasonable approximations of )

the respective long wavelength tidal responses in those latitudes not sampled by the

T/P altimeter until better models become available.

The extensive short wavelength errors in the T/P Mm ocean tide models are also a

large source of errors in the predictions of the contribution that the Mm tidal currents

have on tidal variations of the Earth’s rotation rate. Of course, incoming T/P data

should also reduce the magnitude of these errors as the extent of the short wavelength

errors is reduced. Except for the uncertainties in the unsampled polar latitude tidal
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response, predictions of the effect that the ,Mf ocean tide has on respective tidal

variations of the Earth’s rotation rate appear to be relatively well determined to within

a few microseconds from the presented T/P model. The most significant improvements

in the Earth rotation rate predictions that might be expected from future updates of

the T/P Mf model are likely to be in the form of improved predictions of the motion

contribution. In contrast, the scatter of the mass and motion contributions to polar

motion predictions from the T/P long-period ocean tide models are of similar order,

and both contributions are likely to benefit from future updates of the T/P long-period

ocean tide models.
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Table 1. Long-Period Tidal Arguments

Tide Doodson HQOj ~20j @20j a 620j

Number cm cpd deg

Sa 056.554 -0.492 0.0027377786 357.5252 0

Ssa 057.555 -3.098 0.0054758187 200.9306 0

Mm 065.455 -3.518 0.0362916471 134.9754 0

Mf 075.555 -6.661 0.0732022027 76.6502 0

Mt 085.455 -1.276 0.1094938498 211.6256 0

Mq 093.555 -0.204 0.1409285867 312.3699 0

Thecpd refers tocycles per solar day.

“The astronomical phase angles are referenced to noon on Jan 1, 2000

with a Modified Julian Date of 51544.5 days.
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Table 2. Root-Mean-Square of Differences Between 14 Mm and 23 Mf Tide Gauge

Observations from Miller et al. [1993] and the Respective Classical Equilibrium,

Self-Consistent Equilibrium, and the T/P Cycle 190 Ocean Tides.

Model Mm Tide Mf Tide

Inphase Quadrature Total Inphase Quadrature Total

No Model 5.28 2.22 4.05 8.20 3.83 6.40

Self-Consistent Equilibrium 2.04 2.22 2.13 4.55 3.83 4.21

Classical Equilibrium 1.37 2.22 1.84 2.52 3.83 3.24

TOPEX/POSEIDON Cycle 190 1.75 1.51 1.64 1.66 1.52 1.59

Units are millimeters.
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Table 3. Mean and Standard Deviation of the Second Degree Spherical Harmonic

Component Amplitudes C* and Phase Lags x~o of the Four Variations of the

TOPEX/POSEIDON Mm and Mf Ocean Tide Models.

Model Mm Tide Mf Tide

CL (cm) Xto (0) C’~ (cm) X;o (0)

Mean o Mean o Mean u Mean u

T/P Only 0.741 0.018 176.3 0.8 1.415 0.003 166.6 0.3

T/P+SCH 1.008 0.017 178.1 0.5 1.805 0.003 162.2 0.2

T/P+CEQU 1.025 0.017 176.8 0.5 1.921 0.004 169.6 0.2

T/P+ SCEQU 1.065 0.017 176.9 0.5 1.995 0.004 170.0 0.2

T/P is TOPEX/POSEIDON. SCH is the Schwiderski [1980a, b] ocean tide model.

CEQU is the classical equilibrium ocean tide model. SCEQU is the self-consistent

equilibrium ocean tide model. u is the standard deviation about the mean. The mean and

standard deviation are computed using values from the repeat cycle 150, 160, 170, 180,

and 190 T/P tide models.
)
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Table 4. Second Degree Spherical Harmonic Component Amplitudes CA and Phase

Lags X:. of the Long-Period Ocean Tides

Model Mm Tide Mf Tide

C~ (cm) X;o (0) C& (cm) X:o (0)

Classical Equilibrium (CEQU)

Self-consistent Equilibrium (SCEQU)

Schwiderski [1980a, b]

GEM-T3, Lerch et al. [1992]

T/P Only

T/P + SCH

T/P + CEQU

T/P + SCEQU

0.993

1.170

1.063

0.843

0.789

1.027

1.044

1.084

180.0

180.0

168.9

170.1

174.9

177.3

176.1

176.2

1.879

2.216

1.705

2.052

1.445

1.804

1.920

1.994

180.0

180.0

162.0

150.4

166.2

162.3

169.7

170.0

Values for the TOPEX/POSEIDON (T/P) models are taken from the models that

are estimated from repeat cycles 10 to 190 of the T/P mission.
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Table 5. Contribution of the Mm Ocean Tide to Tidal Variations inUTl

Model Mass Motion Total

UTC UT* UTc UT, UTc UT8

T/P+SCH (Mean)

T/P+SCH (Cycle 190)

T/P+CEQU

T/P+ SCEQU

T/P Only

CEQU

SCEQU

l?msche et al. [1989] a

Dicbnan [1993]

Kam%a et al. [1998]

3.9 (1.1) -116.3 (1.9) 27.9 (3.5) -4.0 (5.9) 31.8 (4.3) -120.3 (7.4)

5.6 -118.4 34.9 -15.1 40.5 -1.33.5

8.2 -120.2 35.7 -14.4 43.9 -1.34.6

8.2 -124.8 35.7 -14.4 43.9 -139.2

8.2 -90.6 35.7 -14.4 43.9 -105.0

0.0 -114.7 0.0 0.0 0.0 -114.7

0.0 -135.3 0.0 0.0 0.0 -135.3

19.8 -105.0 5.4 0.1 25.2 -105.1

13.1 -125.4 -1.0 -0.3 12.1 -125.7

8.8 -119.1 10.7 5.7 19.4 -113.4

Units are microsec. The mean T/ P+SCH values are computed from the cycle 150-190 values.

Values in os are the standard deviations about the mean values.

) “Values are from Gross [1993] based on the tide model by Brosche et al. [1989].
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Table6. Contribution of the Mf Ocean Tide to Tidal Variations inUTl

Model Mass Motion Total

UTc UT. UTc UT. UT. UT.

T/P+SCH (Mean)

T/P+SCH (Cycle 190)

T/P+CEQU

T/P+ SCEQU

T/P Only

CEQU

SCEQU

Brosche et al. [1989] a

Dickman [1993]

Kantha et al. [1998]

31.6 (0.4)

31.4

19.7

19.7

19.7

0.0

0.0

24.7

22.4

33.0

-98.3 (0.3)

-98.3

-108.0

-112.4

-80.2

-107.7

-127.0

-87.4

-108.4

-102.8

14.8 (0.9)

14.3

13.9

13.9

13.9

0.0

0.0

10.2

-1.7

15.4

-3.8 (0.9)

-3.8

-4.9

-4.9

-4.9

0.0

0.0

1.4

-0.9

-1.4

46.4 (1.2) -102.1 (0.9)

45.7 -102.1

33.6 -112.9

33.6 -117.3

33.6 -85.1

0.0 -1.07.7

0.0 -127.0

34.9 -86.0

20.7 -109.3

48.5 -104.2

Units are microsec. The mean T/P+SCH values are computed from the cycle 150-190 values.

Values in os are the standard deviations about the mean values.

aValues are from Gmss[1993] based onthetide model by Brosche eta/. [1984].
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Table 7. Contribution of the Mm Ocean Tide to Tidal Variations in Polar Motion

Model Prograde Retrograde

Mass Motion Total Mass Motion Total

AP OP AP aP AP OP A, a. A, a, AT

(pas) (0) (pas) (0) (pas) (0) (pas) (0) (pas) (0) (pas)

T/P+SCH (Mean)

T/P+SCH (Cycle 190)

T/P+CEQU

T/P+ SCEQU

T/P Only

CEQU

SCEQU

Brosche ei! al. [1989] a

Dickrnan [1993]

23

(5)

21

6

2

30

14

16

8

36

133

(31)

128

88

126

74

155

162

264

327

72

(8)

79

76

76

76

0

0

46

8

199

(8)

201

190

190

190

0

0

253

197

81

(20)

88

75

77

69

14

16

53

32

186

(5)

188

186

188

166

155

162

254

316

53

(lo)

38

26

27

34

12

14

36

21

118

(8)

133

161

153

200

335

342

65

7

19

(7)

31

54

54

54

0

0

34

6

21

(32)

39

12

12

12

0

0

349

228

——

56

(6)

47

34

37

21

12

14

55

17

a~

(0)

99

(4)

93

36

39

358

335

342

28

354

#as is microarcsec. The mean T/P+SCH values are computed from the cycle 150-190 values.

Values in os are the standard deviations about the mean values.

‘Values are from Gross [1993] based on the tide model by Brosche et al. [1989].
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Table 8. Contribution of the Mf Ocean Tide to Tidal Variations in Polar Motion

Model Prograde Retrograde

Mass Motion Total Mass Motion Total

AP crP AP CYP AP QP A, a, A, O, A, or

(pas) (0) (pas) (0) (pas) (0) (pas) (0) (pas) (0) (pas) (0)

T/P+SCH (Mean)

T/P+SCH (Cycle 190)

T/P+CEQU

T/P+ SCEQU

T/P Only

CEQU

SCEQU

13rosche ei al. (1989] a

Dickman [1993]

45

(6)

36

41

40

51

12

15

4

44

1

(8)

14

356

351

21

155

162

263

299

34

(6)

28

31

31

31

0

0

53

14

269

(15)

289

314

314

314

0

0

233

189

55

(11)

48

66

67

69

12

15

56

41

323

(lo)

338

338

335

357

155

162

235

280

91 34

(6) (5)

85 43

98 42

101 43

80 34

12 335

14 342

37 116

57 13

42

(7)

34

29

29

29

0

0

31

6

308

(6)

304

299

299

299

0

0

17

238

——

1

pas is microarcsec. The mean T/P+SCH values are computed from the cycle 150-190 values.

Values in os are the standard deviations about the mean values.

‘Values are from Gross [1993] based on the tide model by Brosche et al. [1989].

104 11

(14) (6)

86 20

96 25

98 26

82 14

12 335

14 342

44 72

53 8
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Figure 1. Static long-period equilibrium ocean tide admittances with mass conserved.

(a) is the classical equilibrium admittance X(6, A), and (b) is the self-consistent equilib-

rium admit tance XS (0, A). Dashed contours are negative and the units are percent.

Figure 2. Comparison of the 17 Mm and 25 Mf tide gauge observations from Miller et

al. [1993] to the respective cycle 190 T/P ocean tide models, the classical equilibrium

ocean tides (CEQU), and the self-consistent equilibrium ocean tides (SCEQU). (a) and

(b) compare the Mm amplitude and phase, and (c) and (d) compare the Mf amplitude

and phase.

Figure 3. Residual variance between 14 Mm and 23 Mf tide gauge observations from

Miller et al. [1993] and the respective cycle 50 to cycle 190 empirical ocean tide models

estimated from T/P altimetric data, the classical equilibrium ocean tides, and the self-

consistent equilibrium ocean tides. The residual variances are shown on a logarithmic

scale.

Figure 4. Zonal averages of the Mm and Mf, ocean tide admittance functions from the

cycle 190 TOPEX/POSEIDON model, the Schwiderski [1980a, b] model, the classical

equilibrium ocean tide, and the self-consistent equilibrium ocean tide model.

Figure 5. Second degree zonal spherical harmonic components of the Mm and Mf ocean

tides. SCEQU and CEQU are results from the self-consistent equilibrium and classical

equilibrium ocean tides, respectively. T/P+SCH, T/P+ SCEQU, and T/P+CEQU are

results from ocean tide models created using the TOPEX/POSEIDON models within )

the latitudes of +66° and the Schwiderski [1980a, b], self-consistent equilibrium, and

classical equilibrium ocean tides, respectively, in all other latitudes. The coefficients are

computed after imposing the conservation of mass on each ocean tide model.

Figure 6. Matter, motion, and total contribution of the T/P+SCH Mm and Mf ocean

tide models to tidal variations in UT1.

Figure 7. Matter, motion, and total contribution to prograde and retrograde polar

motion from the cycle 150 to cycle 190 T/P+SCH Mm and Mf ocean tide models.
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Plate 1. Amplitude I AZ(wzOj, 0, ~) I and phase G. = [~ – a~g(AZ(~zoj, o! J))] Of the VeCtOr

difference between the T/P monthly Mm and fortnightly Mf ocean tide admittance functions

and the respective self-consistent equilibrium ocean tide admittance function.
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