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1 .I INTRODUCTION 

A typical small Beowulf system, such as  the  machine at the  Jet  Propulsion 
Laboratory (JPL) may  consist of 16 nodes interconnected by 100Base-T  Fast 
Ethernet. Each node may include  a  single Intel Pentium  Pro 200 MHz 
microprocessor, 128 MBytes of DRAM, 2.5 GBytes of IDE disk,  and PC1 bus 
backplane,  and an assortment of  other devices. At least one node will have a  video 
card,  monitor,  keyboard, CD-ROM, floppy  drive,  and so forth. But  the technology 
is evolving so fast and price performance and price feature curves are changing so fast 
that no two Beowulfs ever look exactly alike. Of course, this is also because the 
pieces are almost always acquired from a mix of vendors and distributors. The 
power  of de facto standards  for interoperability of  subsystems  has generated an open 
market that provides  a wealth of choices for customizing one's own  version o f  
Beowulf, or  just  maximizing cost advantage as prices fluctuate among sources. 
Such  a  system  will run the Linux (Husain et  a].,  1996)  operating  system freely 
available  over the net  or in low-cost and convenient CD-ROM  distributions. In 
addition,  publicly  available parallel processing libraries such as MPI (Snir  et al., 
1996)  and PVM (Giest  et  al.,  1994)  are  used to harness  the power of  parallelism for 
large application  programs. A Beowulf system such as described here, taking 
advantage of appropriate discounts,  costs  about $30K including all incidental 
components such as low cost  packaging. 

as the number of processors grows, the choice of communications network is no 
longer as clear. (If the  machine can use a crossbar that can support  the entire 
machine, the choice is simply to use that crossbar switch.)  Many  choices  exist o f  
various  topologies  of  small and large switches and hubs,  and  combinations  thereof. 

Naegling,  the Beowulf-class system at  the California Institute of Technology, 
which currently has 140 nodes, has  had a number of communications  networks. 
The first  was  a  tree of 8- and 16-port hubs. At the top of the  tree was a standard 
100 Mbit/s 16-port crossbar,  with full backplane  bandwidth. Each port of this was 
connected to a  hub. Each hub had 100 Mbit/s ports connected to 8 or  16 
computers; however, the backplane bandwidth of each hub was also 100 Mbitis. 
The second  topology  used  additional  16-port crossbars at  the low level of  the tree, 
where 15 ports of each crossbar were connected to computers, and the  last  port was 
connected to a high-level crossbar.  A  third  network (which is the current topology) 
involves 2 80-port  switches,  connected by 4  Gbitls  links. Each switch is intended 
to have 100 Mbit/s ports and full backplane bandwidth.  More  details  about how 
this  network  performs will be discussed in the  two  results  sections. 

The Beowulf approach represents a new business model for acquiring 
computational  capabilities. It complements rather than  competes  with  the more 
conventional vendor-centric systems-supplier  approach. Beowulf is not for 
everyone. Any site  that would include  a Beowulf cluster should have a systems 
administrator  already  involved in supporting the network of workstations  and PCs 
that  inhabit the workers' desks. Beowulf is a parallel computer, and  as such, the 
site must be willing to run  parallel  programs,  either  developed  in-house or acquired 
fiom others. Beowulf is a  loosely  coupled,  distributed memory  system, running 
message-passing parallel programs  that do not assume  a shared memory space 
across processors. Its long latencies require a favorable balance of computation to 
communication and  code written to balance the  workload across processing nodes. 
Within the constrained regime jn which Beowulf is appropriate, it should provide 
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the  best performance to  cost  and often comparable perfonnance per node to vendor 
offerings (Katz,  et.  al., 1998). This paper will examine two electromagnetic 
simulation codes which  fit  within  this re,' olme. 

1.2 PHYSICAL OPTICS SIMULATION 

The first  code  described in this paper (Imbriale and Cwik, 1994) is used to design 
and analyze reflector antennas  and telescope systems. It is based simply on a 
discrete  approximation  of the radiation integral (Imbriale  and  Hodges, 1991). This 
calculation replaces the actual reflector  surface with  a  triangularly faceted 
representation so that  the  reflector  resembles  a  geodesic  dome. The Physical Optics 
(PO) current is assumed to be constant in magnitude  and  phase  over each facet so 
the  radiation integral is  reduced to a  simple summation.  This program has proven 
to be surprisingly  robust  and usefi~l for the  analysis of arbitrary reflectors, 
particularly when the near-field is desired and the  surface  derivatives  are  not  known. 

Because  of its simplicity,  the algorithm has  proven to be extremely  easy  to adapt 
to the parallel computing  architecture  of  a  modest  number of large-grain computing 
elements. The code was  initially parallelized on the Intel Paragon, and has since 
been ported to the  Cray T3D, T3E, and Beowulf  architectures. 

For generality,  the code considers a dual-reflector calculation,  as  illustrated in 
Figure 1,  which can be  thought of as three sequential  operations: (1) computing 
the currents on the first (sub-) reflector using  the  standard PO approximation: (2) 
computing  the currents on the second (main) reflector by utilizing  the  currents on 
the first (sub-) reflector as  the field generator; and  (3) computing the required 
observed field values by summing the fields from the currents on the  second (main) 
reflector. The most time-consuming  part of the calculation is the  computation of 
currents on the  second reflector due  to  the  currents on the  first,  since for N triangles 
on the first reflector. each  of the M triangles on the second reflector require an N- 
element sum over  the  first. At this  time, the  code has been parallelized by 
distributing  the M triangles on the  second reflector, and having all processors store 
all  the  currents on the N triangles of the first reflector (though the  computation  of the 
currents of the first reflector is done in parallel.) Also, the calculation of observed 
field  data has been parallelized. So, the three  steps listed above are all performed in 
parallel. There are also  sequential  operations  involved, such as 1 / 0  and the 
triangulation of the reflector surfaces, some of which  potentially  could be performed 
in parallel,  but this would require a  serious effort, and has  not been done  at  this 
time. 

This code is written in FORTRAN,  and has been parallelized using MPI. 
Communication  is required in two locations of the code. At the  end of the first 
step, after  each  processor  has computed a portion of  the  currents  on  the  first reflector, 
the currents must be broadcast to all the  processors.  While this may be done in 
many  ways, a call to MPl-Allgathew is  currently  used.  During  the third step, each 
processor  calculates  a partial value for each final observed field, by integrating over 
the main reflector currents local to that processor. A global  sum (an MPI-Reduce 
call) is required to compute the complete result for  each  observed  field  value.  Since 
there are normally a  number of far fields computed, currently there are that  number of 
global  sums. These could be combined  into  a  single  global sum of larger length, 
but this  has  not been done at  this  time, since  the  communication  takes up such  a 
small portion of the  overall run time. 
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Figure 1 .  The dual reflector Physical Optics  problem,  showing the  source,  the 
two reflectors, and  the  observation points. 

1.3 FDTD SIMULATION 

The Finite-Difference Time-Domain  (FDTD) code (Taflove, 1995) studied here is  a 
fairly  simple  example  of  a  time-stepping partial differential equation (PDE) solution 
over a  physical  problem  domain  which is distributed over the memory  of  a mesh of 
processors. In traditional FDTD electromagnetic  codes,  there  are generally six field 
unknowns  which  are staggered in time  and space. For the  purposes  of this paper, 
they can be thought of as residing in a  spatial  cell, where each cell  is updated at 
each time step. This particular code adds two specific features. First, each field 
component is split  into two sub-components  which are stored in memory and 
updated separately. This is done in order to  implement  a  boundary  condition 
(Berenger 1994). Second,  the parallelization that was done for this code tried to 
reduce the required communication,  and therefore redundantly  updates some of the 
sub-components on the face of each processor’s domain, and  communicates only 
four of  the sub-components on each face. 

This code is written in FORTRAN using MPI. The decomposition performed 
is two-dimensional (in x and  y),  whiie the spatial region modeled  is three- 
dimensional. The processors are mapped  into  a  two-dimensional  Cartesian  mesh 
using MPI’s facilities for Cartesian communicators, and each processor models a 
physical  domain  that  contains  a  subset of the  entire  physical  domain in x and y,  and 
the  entire  domain in z. Because  of  this, at each time each processor swaps one fBce 
(a  complete  y-z plane) of four sub-components in the ?x direction, and one face  (a 
complete  x-z plane) of four other  sub-components in the ?y direction. The 
communication is done  as follows: each  processor  issues an MPI-IRecv call to each 
neighboring  processor  (usually 4, except  on  the  edges of the processor mesh); each 
processor fills and sends a buffer in each appropriate direction, suing an MPI-SSend 



call; and finally, each processor does a  number  of MPl-Wait operations,  followed by 
unpacking  the received data.  This  combination of calls  should produce no 
additional buffering of data,  since the program is already doing  some in an effort to 
reduce  the  number  of messages. 

1.4 PO RESULTS 

Timing results for the PO code in this paper are presented by breaking  down the 
overall timing into three parts. Part I is input I/O and  triangulation of the main 
reflector surface, some of which is done in parallel. No communication occurs in 
part 1. Part I1 is triangulation of the sub-reflector surface (sequential),  evaluation of 
the  currents on the sub-reflector (parallel), and evaluation of  the  currents on the main 
reflector (parallel). A  single MPlAllgathew occurs in part 11. Part 111 is evaluation 
of the observed fields (parallel) and I/O (on only  one processor). A number of 3 
word  global sums occur in part 111, one  for  each  observation point. In the test cases 
used here, there are 122 observation points. The Beowulf results are from the  16 
node system,  using the GNU g77 compiler. 

Two different compilers were compared (Gnu g77 and Absoft f77) on the 
Beowulf  system. One set of indicative  results Erom these  runs are shown in Table 
1 .  For this code, the Absoft compiler produced code that  was  approximately 30% 
faster, and this compiler was used hereafter. 

It should be mentioned  that  the  computation of the radiation  integral in two 
places (in parts I 1  and 111) originally had code of the form: 

C E J K  = CDEXP ( - A J * A K R ) .  
where A J  = ( 0 . do ,  1 . d0 ) . This can be changed to: 

On the  T3D.  these two changes led to improved  results  (the  run-times were 
reduced by 35 to 40%,) which are shown in this paper. When these  changes were 
applied to  the Beowulf code using the second compiler, no significant performance 
change was  observed, leading to the  conclusion  that  one of the optimizations 
performed by this  compiler  was  similar to this hand-optimization. 

C E J K  = DCMPLX (DCOS (AKR) , - D S I N  (AKR) ) .  

Table 1. The  effect of a two  Beowulf compilers (gnu g77  and Absoff f77), shown 
by timing results (in minutes) for PO code, for M=40,000, N=4,900. 

It may be observed from Tables 2, 3, and 4  that  the Beowulf code performs 
slightly  better than the T3D code, both in terms  of  absolute performance as well as 
scaling from 1 to 64 processors.  (Tables 2 and 3  contain  results  obtained  on 
Hyglac, and Table  4  contains results obtained on Naegling.) This performance 
difference can be explained by the faster CPU on the Beowulf versus the  T3D, and 
the very  simple  and  limited  communication not enabling the  T3D’s faster network 
to influence  the  results. The scaling difference is more  a function of 1/0, which is 
both more  direct and more  simple  on  the Beowulf, and thus faster. By reducing 
this  part of the  sequential  time,  scaling performance is  improved.  Another  way to 
look at this is to compare  the  results in the three tables.  Clearly,  scaling is better 



in the larger test case, in which I/O is a  smaller percentage of overall time. It is 
also clear that the communications  network used on Naegling  is  behaving as 
designed  for the PO code running  on 4. 16, or 64 processors. Since  the majority of 
communication is single word global sums, this  basically  demonstrates  that the 
network has reasonable latency. 

Table 2. Timing results (in seconds) for PO code, for M=40,000, N=400. 

I M m b e r  of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  T3 11 

Table 3. Timing results (in minutes) for PO code, for M=40,000, N=4,900. 

Tables 5 ,  6. and 7 show comparisons of complete  run time for the 3 test 
problems  sizes, for the Beowulf, T3D. and T3E-600 systems.  These demonstrate 
good performance on the two Beowulf-class machines when compared with the T3D 
in terms of overall performance, as well as when compared with the  T3E-600 in 
terms of price-performance. For all three test cases, the Beowulf scaling is better 
than the  T3D scaling,  but  the  results are fairly close for the largest test case, where 
the Beowulf being used is Naegling. This can be explained in large part by I/O 
requirements and timings on the  various  machines. The IiO is close  to constant for 
all test  cases  over all machine sizes, so in some  way it acts as serial code that hurts 
scaling performance. The IiO is the fastest on Hyglac,  and  slowest on the T3D. 
This is due to the number of nodes  being  used  on the Beowulf machines, since 
disks  are  NFS-mounted, and the  more  nodes there are,  the  slower the performance  is 
using NFS. The  T3D forces all IiO to travel through its Y-MP front end, which 
causes it to be very slow. Scaling  on  the T3D is generally as  good  as the small 
Beowulf,  and faster than the large Beowulf, again due  mostly to I/O. It may be 
observed  that  the speed-up of the  second test case on the T3E is superlinear in 
going from 1 to 4 processors. This is probably caused by a change in the ratio of 
some of the size of some  of  the local arrays to the  cache  size  dropping  below 1. 
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Table 5. Timing results (in seconds) for complete PO code, for M=40,000,  N=400. 

i 12.6 i 4.43 i 12.6 i 4.43 

Table 7 .  Timing results (in minutes) for complete PO code, for M=160,000, 
N=10.000. 

A hardware monitoring tool  was used on the T3E  to measure the number of 
floating point operations in the  M=40,000, N=4,900 test case as 132x1 0” floating 
point operations. This  gives  a  rate of 46,  44,  and 120 MFLOPis on one processor 
of  the  Beowulf, T3D,  and T3E-600  respectively. These are  fairly  good (23,29, and 
20% of  peak,  respectively) for RISC  processors  running  FORTRAN  code. 

1.5 FDTD RESULTS 

All FDTD results  that are shown in this section use  a fixed size local (per 
processor) grid, of 69~69x76 cells. The overall grid  sizes therefore range from 
69x69~76  to   552~552~76 (on 1 to 64 processors). (All Beowulf results are fi-om 
Naegling.) This  is  the  largest local problem size that may be solved  on  the T3D, 
and  while  the  other  machines have more local memory and  could  solve larger 
problems, it seems more fair to  use the same amount of local work for these 
comparisons. In general, the FDTD method requires 10 to 20  points per 
wavelength for accurate solutions,  and a boundary region of 10 to  20 cells in each 
direction is also needed.  These  grid  sizes therefore correspond to scattering targets 
ranging in size from 5 ~ 5 x 5  to  53~53x5 wavelengths. 

Both available  compilers  were  used  on the Beowulf version of the FDTD code. 
While  the results are not tabulated in this paper, the Gnu g77 compiler produced 
code  which ran faster than the code produced by the Absoft f77 compiler. However, 



the results were just a  few percent different, rather than on the scale of the differences 
shown by the PO code. All results  shown  here  are from the  Gnu g77 compiler. 

Table 8 shows results on various  machines and various  numbers of processors in 
units  of CPU seconds per simulated time step.  Complete simulations  might 
require  hundreds to hundreds of thousands time steps,  and the results can be scaled 
accordingly, if complete  simulation times are desired.  Results are shown broken 
into  computation and communication times, where communication  includes send, 
receive, and buffer copy times. 

1 Number o f  I Beowulf   Cray Cray 

Table 8. Timing results (in computation - communication CPU seconds per time 
step) for FDTD code, for  fixed problem size per processor of 69~69x76 cells. 

It is clear that the Beowulf and T3D computation times are comparable,  while 
the  T3E times are  about 3 times  faster.  This is reasonable,  given the relative clock 
rates (200, 150, and 300 MHz) and peak performances (200, 150, 600 MFLOP/s) 
of the  CPUs. As with  the PO code,  the T3D attains  the  highest fraction of peak 
performance, the higher clock rate of the Beowulf gives  it  a slightly better 
performance than the  T3D, and the T3E  obtains  about  the same fraction of peak 
performance  as the Beowulf. As this code has much  more  communication that the 
PO code, there is a clear difference of an order of magnitude between the 
communication times on the  Beowulf  and  the  T3D  and T3E. However, since this 
is still  a  relatively small amount of  communication as compared  with the  amount of 
computation, it doesn’t really effect  the overall results. 

The  communications portion of the  results from the  Beowulf runs deserve firther 
discussion.  The  choice  of  communication  network to use on Naegling  was always 
difficult. For  any Beowulf-class machine,  the  most general choice of network  is  a 
large switch that  provides good latency and bandwidth between any  pair of ports, 
while  providing full backplane bandwidth between all the ports.  Observing  the 
current marketplace, is appears that this is hard to build  (at  a reasonable cost) for 
large numbers of ports.  Today, it is not clear that  anyone  has succeeded for a 
machine  of  Naegling’s size (1 00- 150 nodes  at  various  times). 

The current network on Naegling breaks the ports  into groups of 20. The 
hardware for the first two groups were recently upgraded,  and  the hardware for the 
remaining groups will be upgraded in coming  days.  These changes in hardware 
have created a  situation where the communication times are not constant fiom one 
day to the  next, and  additionally, for large runs, there can be a  variation from one 
run to  the next on the  same day.  Multiple  runs on 4 and 16 nodes produced 
communication  times  that  varied  only  within  a few percent, while three successive 
64-node  runs that were most recently performed produced communication times of 
0.67, 0.55, and 0.31 (seconds per time  step.) These numbers were averaged to 
obtain the 0.51 used in Table 8, though it could be argued that once the hardware 
problems are solved, 0.3 1 (or lower) should be produced consistently. (Note: the 
current problems appear to be in  bandwidth,  only; latencies both are acceptable and 
have not been observed to vary more than a  few percent.) 



1.6 CONCLUSIONS 

This paper has shown  that  for both parallel calculation of the radiation integral and 
parallel finite-difference time-domain  calculations,  a Beowulf-class computer 
provides  slightly  better perfonnance that  a  Cray T3D,  at a much lower  cost. The 
limited  amount of communication in the physical optics code defines it as  being in 
the heart  of the regime in which Beowulf-class  computing is appropriate, and  thus it 
makes  a good test  code  for an examination of code performance and scaling, as well 
as an examination of compiler  options and other  optimizations. The  FDTD code 
contains more communication, but the amount is still fairly small when compared 
with the amount of computation, and this code is a good  example of domain 
decomposition  PDE  solvers.  (The timing results from this code show  trends that 
are very similar  to the results  of  other  domain  decomposition PDE solvers  that have 
been examined  at JPL.) 

An interesting observation is that for Beowulf-class computing,  using 
commodity hardware, the user also must be concerned with commodity sohare ,  
including  compilers. As compared  with  the T3D, where Cray supplies and updates 
the best compiler it has  available, the Beowulf system has many  compilers  available 
from various vendors, and it is not clear that any one  always  produces better code 
than the others. In addition to the  compilers used in this paper, at least one other 
exists  (to  which the authors  did  not have good  access.) The various  compilers also 
accept various  extensions to  FORTRAN, which may make compilation of any 
given code difficult or impossible  without  re-writing  on some of it, unless of course 
the  code was written strictly in standard  FORTRAN 77 (or FORTRAN 90), which 
seems to be extremely  uncommon. 

It is also interesting to notice  that  the use hand-optimizations produces 
indeterminate  results in the final run times, again depending on which  compiler 
and which machine is used. Specific compiler  optimization flags have not been 
discussed in this paper. but  the set of flags that was used in  each case were those 
that produced the fastest running code,  and in most but not all cases, various 
compiler flag options produced greater variation in run times that  any hand 
optimizations. The implication  of  this is that  the user should try to  be certain there 
are no gross inefficiencies in the code to be compiled, and that it is more important 
to choose the  correct  compiler and compiler  flags.  This is not  a good situation. 

The choice of communication network for a large Beowulf is certainly not 
obvious.  Current  products in the  marketplace  have  demonstrated  scalable  latencies, 
but not scalable bandwidths. However, this may be changing,  as seems  to be 
demonstrated by the  new  portions of Naegling’s  network. 

Overall,  this paper has validated the choice  of  a Beowulf-class computer for both 
the physical  optics  application (and other  similar low-communication  applications) 
as  well  as for the finite-difference time-domain  application (and other  domain 
decomposition  PDE  solvers). It has  examined performance  of these  codes in terms 
of  comparison with the Cray T3D and T3E, scaling, and compiler  issues, and 
pointed out  some “features” of which users of Beowulf-systems  should be aware. 
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