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Abstract

I show that the dynamics of two coupled torsion pendulums is
drastically affected by their mutual Casimir surface interaction if the
masses involved are relatively close to each other (~ 0.1-10 pm). The
effect is directly related to the ratio of the masses used to the Planck
mass. This system could be used to obtain an improved value of the
Newtonian constant of gravitation G and it represents an accessible
environment where to study the simultaneous effects of gravitation
and quantum field theory.



Introduction

Despite the formidable increase both in sophistication of the instrumenta-
tion and in its detailed characterization since the publication of Cavendish’s
seminal paper exactly 200 years ago [1], the inconsistencies among different
measurements of the Newtonian gravitational constant G are still myste-
riously much larger than those of other typical natural constants. As the
causes of such disagreements are still the subject of debate, much work has
been devoted to not only better understand existing experimental strategies,
but also to devise new ones.

The rationale to consider experiments making use of appropriate quantum
processes to measure G is at least twofold. From the experimental standpoint,
we have the exceptional record of verification of quantum mechanics on any
scale and the high accuracy with which natural constants in the quantum
domain are known. On the theoretical side, strategies of this kind may allow
one to shed light on quantum gravity.

Traditionally, the search for environments where gravitation and quan-
tum field theory play significant, simultaneous roles has been relegated to
regions of space-time unamenable to direct experimentation. Some experi-
ments based on supercooled atom interferometry have achieved impressive
results in the measurement of the local value of the gravitational accelera-
tion g. This approach (“measure g to measure G”), however, cannot result

in any significant progress in our knowledge of the Newtonian constant of



gravitation, as the mass of the Earth cannot be determined with accuracy
higher than that of G itself.

In this paper, I propose carrying out a direct measurement of G by means
of a system of two identical torsion pendulums coupled by both their mutual
gravitational interaction and by the Casimir (retarded van der Waals) surface
force between two very close masses. The advantage of such an approach lies
with the possibility to use a well reproducible and theoretically understood
non-gravitational force to obtain a value of G less sensitive to the metrology of
the masses involved. Also, I show that the behavior of this system of coupled
oscillators is critically determined by the ratio of the torsion pendulum masses
to the Planck mass. This represents an example of a classical system whose
dynamics cannot be described without relativistic quantum field theory in

the presence of gravitation.

Theoretical and Experimental Considerations

As is well known, a typical measurement of G is performed by studying
either the static or the dynamic effect a well characterized perturbing mass
causes on an otherwise ideally isolated system, such as a torsion pendulum.
Evidently, such a procedure can yield G to within a precision not higher than
that within which the field source itself is known. That is, this approach can
at the most yield Gm, where m is the perturbing mass.

In principle, this problem can be mitigated by letting both the measuring



system and the perturbing mass interact under the action of a well char-
acterized non-gravitational force. The overall dynamics of the measuring
system and of the perturbing mass can then be analyzed to determine their
inertial masses. From this point of view, the measuring system becomes the
combination of two objects moving under the action of both gravitational
and non-gravitational internal forces. In what follows, we shall investigate
the use of the Casimir force between two surfaces to provide the needed
non-gravitational interaction.

The motivation for this choice is of both practical and theoretical nature.
On the one hand, very recent experiments on the Casimir force, carried
out with a torsion pendulum in static deflection mode, have yielded results
in striking agreement with quantum field theory predictions. Also, as the
nature of this force is quite fundamental, our ability to model its effects rests
upon well-understood theoretical principles.

Several recent developments indicate that accounting for Casimir forces
may not only be ultimately rewarding, but in several cases absolutely neces-
sary to develop a correct modeling of the instrumentation used. This is the
case, for instance, in the optimization of experiments aimed at constraining
new, hypothetical long-range interactions.

Generally speaking, one may mention the effort to design new instrumen-
tation to test the law of gravity on ever shorter (sub-centimeter) scales. At

the same time, there exists great interest in probing the Casimir force as



predicted by quantum field theory in regimes where the retardation is domi-
nant, that is, on longer and longer scales (~ 1 cm). As these efforts continue,
experimenters from these two areas are bound to meet on an exciting mid-
dle ground where both gravitation and quantum field theory play an equally
important role.

The idea of measuring G by using two physical pendulums coupled only
by their mutual gravitational interaction is not new. However, no results
from this approach appear to have ever been published in the literature after
the procedure was first described. The original setup includes two physical
pendulums oscillating in the gravitational field of the Earth and coupled
only by their mutual gravitational interaction. One pendulum is displaced
and released from rest, while the other one starts also at rest from its vertical
position of stable equilibrium. The value of G is then obtained from a direct
measurement of the displacement of the latter pendulum as a function of
time. As the coupling of the two pendulums is purely gravitational, this
method can again only yield a value of Gm.

In what follows, I propose the use of two coupled torsion pendulums. The
reasons are rather standard, and relate, for instance, to the fact that much
lower natural frequencies of oscillation can be achieved in this way, resulting
in increased values of the observables. The treatment shown, however, can
easily be adapted to any other system of similarly coupled oscillators.

In order to investigate the feasibility of measuring G from the dynamics



of the two coupled torsion pendulums, we must obtain an estimate of the rel-
ative importance of gravitational and Casimir forces under typical laboratory
conditions.

In his original paper, Casimir obtained an expression for the force per
unit area between two neutral, perfectly conducting parallel surfaces at a
distance s from each other. This force, due to the effect on the vacuum
energy of the quantized electromagnetic field between two boundaries, is
Foaspp(s) = (72/240)(he/s%).

However, as it is extremely difficult in practice to deal with two surfaces
which must be both extremely close and perfectly parallel, the typical exper-
imental arrangement has been that of using a spherical surface and a plane |
. If the surfaces are very close compared to their Gaussian curvature (“gen-
tly curved surfaces”), one can use the Proximity Force Theorem (PFT) to
obtain a very good approximation of the surface force { ].

In our case, use of the PFT to approximate the (attractive) Casimir force

between two identical spherical surfaces yields:
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Let us now consider two homogeneous spheres having the same mass and
radius, m and R, respectively. Let the distance of closest approach between
their surfaces be s < R. The distance s at which the Casimir force and the

gravitational force are equal in magnitude can be approximately obtained by



setting Fgrav = FCasss- Lhis yields
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where, interestingly, M* is the Planck mass (M* = 2.18 x 10~ g). For two
spheres with a mass of 10 g each and the approximate density of tungsten (5
g/cm3), or R =~ .78 cm, this distance is s ~ 0.4 um, well typical of present-
day Casimir force experimentation. This result justifies our expectation that

the effect of the non-gravitational coupling can in fact be measured.

Casimir Force-Coupled Torsion Pendulums

Let us consider two ideal torsion pendulums each made up of two identical
homogeneous, spheres of gravitational and inertial masses my and m;, respec-
tively, and of radius R whose centers are at a distance L from the attachment
point of a suspension rod to a torsion string of constant « (Fig. 1). Let us
use the coordinates §; and ¢, to describe the position of the two pendulums,
counted from the z-axis counter-clockwise and clockwise respectively. We
shall assume that all motion takes place in the (z, y) plane and indicate the
distance between the two attachment points O, and O5 as D and the dis-
tance vector from the center of the first to the center of the second mass as
ri2. As a first approximation, we shall neglect all gravitational effects of the

counterweights and rods. The equations of motion for these two rigid bodies



are then:

6, = —-'391 + ——L—(Fg + F¢) [Lsin(8y + ¢2) — Dsin¢y] , (3)
I I’rlz
- L
by = -—-;—qbz + 7—(Fg + Fo) [Lsin(81 + ¢2) = Dsin o] , (4)
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where I is the moment of inertia of each pendulum, and F,; and Fc are the
magnitudes of the gravitational and Casimir forces, respectively. Notice that,
because of the spherical symmetry of the masses, the Casimir force can be
treated as a central force.

Linearization of the above system of coupled differential equations for 8y,
¢2 < 1 rad ensures consistency with the requirement from the PFT that the
two surfaces be relatively close at all times. A standard solution yields the

following frequencies for the two normal modes of oscillation:

Q2 = wi+a(D-2L), (5)

02 = wi+aD, (6)

where w? = x/I and the parameter o is defined in terms of the equilibrium
distance of the centers of the two spheres, r12(6; = 0,¢2 =0) = D — 2L and
the distance of closest approach of the two surfaces, § = r12(0,0) — 2R =

D — 2L - 2R, as:
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One can thus write the following solution corresponding to the initial condi-



tions 81(0) = 61,0, 61(0) = 0, ¢2(0) = 0, and ¢3(0) = 0:

61(t) = 61,0 cos(Wmodt) COS wayt (8)

¢2(t) = 01’0 sin(wmodt) Sin wyyt , (9)

where the average and modulation frequencies are defined as wyy = %(Ql +Q5)
and wmpod = %|Ql — Qs|, respectively. Given the relative weakness of the
coupling, wmod € wo and wmedt K 1 rad for all times of practical interest.

Thus, the above result for ¢2(t) can be approximated as:
: alL .
¢2(t) 2 ol’o(wmodt) Sinwayt = 10—t sinw,yt . (10)
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By assuming the moment of inertia of each pendulum to be I = 2m(§R2+L2),
and by expanding the expression for the parameter a to first order in §/R,

we find the following expression for ¢o(t):
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(11)
Discussion and Conclusions

By assuming a torsion fiber with x ~ 1078 kg-m?/s? for a torsion pendulum
with two 10 g-masses attached at the end of massless rods 10-cm long, we
find a natural frequency wo = 7.1 x 1073 s71, or a period Ty & 15 min. If the
two ne?.rest masses are at a distance § = 1.0 pm at equilibrium, and 6,0 = 1

deg, the above solution becomes ¢(t) ~ 2.2 x 10~"rad/s [1 + .39] ¢ sin wayt.



