ELECTROACTIVE POLYMER ACTUATED MINIATURE ROBOTICS

* Jet Propulsion Laboratory (JPL), Caltech, Pasadena, CA, USA yosi@ipl.nasa.gov
** Artificial Muscles Research Institute, UNM, Albuquerque, NM, USA
*** Composites and Polymers Branch, NASA LaRC, Hampton, VA, USA

ABSTRACT
Electroactive polymers (EAP) actuators can induce large bending and longitudinal actuation strains. This capability can be used to develop miniature, lightweight actuators that consume low-power to produce miniature robotic devices. This reported study is concentrating on the development of effective EAPs and the resultant enabling mechanisms employing their unique characteristics. Several EAP driven mechanisms were developed including a gripper, manipulator arm and surface wiper. The manipulator arm was made of a composite rod that was lifted by an electrostatically activated longitudinal scrolled rope, and an end-effector gripper with bending EAP fingers allowing to grab and hold such objects as rocks. An EAP surface wiper was developed to operate like a human finger removing dust from windows and solar cells. These EAP driven devices are taking advantage of the large actuation displacement of these materials where there is a limited requirement for an actuation force capability.

INTRODUCTION
Efficient miniature actuators that are light, compact and driven by low power are needed to drive telerobotic devices and space mechanisms in future NASA missions. Examples of space mechanisms and devices that require actuators include robotic arms, rovers, release mechanisms, antenna and instrument deployment, positioning devices, aperture opening and closing devices, and real-time compensation for thermal expansion in space structures, etc. Electroceramics (piezoelectric and electrostrictive) offer effective, compact, actuation materials and they are incorporated into such mechanisms as ultrasonic motors, inchworms, translators and manipulators. In contrast to electroceramics, electroactive polymers (EAP) are emerging as new actuation materials [Furukawa and Wen, 1984] with displacement capabilities that cannot be matched by the striction-limited and rigid ceramics. Generally, EAPs are lighter and their striction capability can be as high as two orders of magnitude more than EACs. Further, their response speed is significantly higher than SMAs. The authors' current study is directed towards taking advantage of these polymers' resilience and the ability to engineer their properties. The mass producibility of polymers and the fact that EAPs do not require poling (in contrast to piezoelectric materials) help to produce them at low cost. EAPs can be easily formed in various shapes and can be used to build micro-electro-mechanical systems (MEMS). They can be designed to emulate the operation of biological muscles [Hunter and Lafontaine, 1992; Shahinpoor, 1994; and Kornblush, et al, 1995] with unique characteristics of high toughness, large actuation strain constant and inherent vibration damping.

The development of muscle actuators is involved with an interdisciplinary effort using expertise in materials science, chemistry, electronics, and robotics. At the initial phase of the authors' study efforts were made to identify
electroactive polymers that induce large actuation strains. Two categories of EAPs were identified including (a) bending actuators: Ion exchange memberance platinum (IEMP) composites; and (b) longitudinal actuators: electrostatically activated EAPs. These two EAP actuators offer the capability to bend or stretch/extend, which essentially emulate the operation of biological muscles and limbs. In the second phase, efforts were made to identify robotic and planetary applications and demonstrate the EAP actuators capability. In the current phase the efforts are concentrated on determining EAPs capability to operate at space conditions of low temperatures and vacuum. Also, studies are taking place to determine the capability to control and obtain feedback using EAP actuators.

IONOMERS AS BENDING EAP ACTUATORS

The bending EAP actuator is composed of a perfluorinated ion exchange memberance platinum (IEMP) composite material, where platinum electrodes are deposited on both sides. After 0.18-mm thickness IEMP films are formed they are cut to strips that are 25x3.5-mm in size and weighing 0.1-g. To maintain the actuation capability of IEMP, the material needs to be kept moist continuously. Efforts are currently being made to overcome this limitation and success was observed when using thick platinum electrodes and limiting the voltage to <2-V rather than the levels of 3-5 volts. Using such electrodes, an IEMP film was demonstrated to operate continuously for more than one million cycles. In addition to the use of thick platinum, efforts are made to form a coating seal using encapsulation methods as a quasi-skin to protect the ionic constituents of the IEMP films.

The structure and properties of the IEMP have been the subject of numerous investigations (see for example [Heitner-Wirguin, 1996]). One of the interesting properties of this material is its ability to absorb large amounts of polar solvents, i.e. water. In order to chemically electrode IEMPs, platinum (Pt) metal ions are dispersed throughout the hydrophilic regions of the polymer, and are subsequently reduced to the corresponding zero valent metal atoms. This results-in the formation of a dendritic type electrode. When equilibrated with aqueous solutions these membranes are swollen and they contain a certain amount of water. Swelling equilibrium results from the balance between the elastic forces of the polymeric matrix and the water affinity to the fixed ion-exchanging sites and the moving counter ions. The water content depends on the hydrophilic properties of the ionic species inside the membrane and also on the electrolyte concentration of the external solution. To enhance the force actuation capability of IEMPs, techniques of producing thicker films as well as modification of the ionomer processing were investigated. Success was observed in processing the material to induce more than two times the strain with a higher response consistency. To better understand the actuation mechanism in ionomers the phenomena is studied and modeled. Also, alternative ionomer actuators are being searched.

When an external voltage is applied on an IEMP film, it bends towards the anode at a level that increases with the voltage (see Figure 1). Exposure to lower temperatures reduced the response amplitude of the ionomer as shown in Figure 2. In an experiment that lasted over 6 hours it was shown that while the response dropped by more than 75% at -140°C the decrease was a reversible process. The ionomer response returned to its original level at room temperature. Under AC voltage, the film undergoes swinging movement and the displacement level depends not only on the
voltage magnitude but also on the frequency. Activation at lower frequencies (down to 0.1 or 0.01 Hz) induces higher displacement, which reach a saturation as shown in Figure 1. The level at which this saturation is reached is also dependent on the frequency and it is lower at higher frequencies. The movement of the muscle is controlled by the applied electrical source but it is strongly affected by the water content that serves as an ion transport medium. The operation of the ionomer as a bending actuator is demonstrated in a configuration of a window surface wiper in Figure 3, where the ionomer was driven by 2.5V, which removed the dust. As can be seen in this Figure, an ionomer strip is attached to the surface of a glass plate and was actuated left or right as desired by changing the polarity of the drive voltage.

![Figure 1: The response of ionomer to various voltage amplitude levels at three different frequencies.](image1)

![Figure 2: Deflection amplitude of the ionomer as a function of time and temperature.](image2)

![Figure 3: A view of a surface wiper with a simulated window and dust, where an ionomer is bending back and forth next to a glass plate.](image3)

![Figure 4: Power consumption of bending ionomer subjected to 0.1Hz electro-activation.](image4)

LONGITUDINAL ELECTROSTATIC POLYMER ACTUATORS

Polymers with low elastic stiffness and high dielectric constant can be used to induce large actuation strain by subjecting the material to an electrostatic field. These characteristics of polymers allow producing longitudinal actuators that operate similar to biological muscles. The governing principle is the response of the material to Coulomb forces between charged particles. Traditional electrostatic actuators are fabricated as a capacitor with parallel electrodes with a thin air gap between them. One of the major disadvantages of this type of actuators is their relatively low breakdown voltage.
The authors adopted the approach that was reported in reference [Kornslush, 1995], where a longitudinal electrostatic actuator was made of dielectric elastomer film coated with carbon electrodes. The force (stress) that is exerted normally on such a film with compliant electrodes is as follows:

\[P = \varepsilon \varepsilon_0 E^2 = \varepsilon \varepsilon_0 \left(\frac{V}{t} \right)^2 \]

Where: \(P \) is the normal stress, \(\varepsilon_0 \) is the permittivity of vacuum and \(\varepsilon \) is the relative permittivity (dielectric constant) of the material, \(E \) is the electric field across the thickness of the film, \(V \) is the voltage applied across the film and \(t \) is the thickness of the film.

Examining the equation above, it is easy to notice that the force magnitude is twice as large as that for the case of rigid parallel electrodes. To obtain the thickness strain the force needs to be divided by the elastic modulus of the film. Use of polymers with high dielectric constants and application of high electric fields allow inducing large forces and strains. To obtain the required electric field levels there is a need for either to use high voltage and/or employ thin films. For elastomers with low elastic modulus, it is reasonable to assume a Poisson’s ratio of 0.5. This means that the volume of the polymer is kept constant while the film is deformed under the applied field. As a result, the film is squeezed in the thickness direction causing expansion in the transverse plane. For a pair of electrodes with circular shape, the diameter and thickness changes can be determined using the following relation, where the second order components are neglected.

\[\Delta D / D_0 = (1/2) \Delta t / t_0 \]

Where: \(D_0 \) is the original diameter of the electrodes and \(\Delta D \) is the resultant diameter change, \(t_0 \) is the original thickness and the \(\Delta t \) is its change under electric activation.

To produce a longitudinal actuator with large actuation force, a stack of two silicone layers (Dow Corning Sylgard 186) was used with carbon electrodes on both sides of one of the layers. The two layers were rolled to form a rope as the one shown photographically next to a scale in Figure 5. The displacement in the rope cross section is a rotational one around the rope axis and it is constrained by interlaminar stresses. Therefore, the total actuation extension of the rope is proportional to its length and the resultant actuation force is proportional to the cross-section area normal to the axis. To develop an EAP muscle using such a rope, the length and diameter are used as design parameters, enabling the adaptation of the rope actuator to specific applications.

Figure 5: Scrolled rope longitudinal actuator lifting a rock.

ROBOTICS USING EAP ACTUATOR

The availability of EAP actuators that can bend or extend/contract allows producing unique robotic devices that emulate human hands. The authors investigated several potential applications including gripper, robotic arm and surface wiper. As shown earlier, IEMP composite films are demonstrating a remarkable bending strain under a relatively low voltage drive, using a very low power. However, these ionomers are demonstrating a relatively low force actuation capability. Since IEMPs are made of a relatively strong material with a large strain capability, they were employed similar to the function of human fingers. In Figure 6, a gripper is shown using IEMP fingers in the form of an end-effector of miniature low mass
robotic arms. The fingers move back and forth to allow opening similar to human hand, embracing the desired object and gripping on it. The hooks at the end of the fingers are function similar to fingernails to secure the gripped object.

Figure 6: A 4-finger IEMP end-effector gripper lifting 10.3-g rock.

So far, multi-finger grippers that consist of 2- and 4-fingers were produced, where the 4-finger gripper lifted a mass of 10.3-g. This gripper prototype was mounted on a 5-mm diameter graphite/epoxy rod to form lightweight arm. The gripper was driven by 2 to 5-V square wave signal at a frequency of 0.1-Hz to allow sufficient time to perform a demonstration of the gripper capability. To operate the gripper its fingers are opened and the gripper is brought near the object to be collected. At this point the fingers are closed and the object is lifted. The demonstration of the gripper capability to lift a rock was intended to pave the way for a future application to planetary sample collection tasks providing miniature ultra-dexterous and versatile tool. To allow lifting the robotic arm, a set of two ropes was used as shown in Figure 7. One rope actuates the arm by tilting its balance and its lifting displacement is determined by the ratio between its connection distance from the pivot point compared to the gripper distance. The other rope is a longer one and is connected directly to the gripper that is lifted or dropped as a function of the rope actuation displacement. Figure 7 shows the full robotic arm with the two longitudinal rope actuators and the gripper with ionomer fingers gripper.

Lesson learned from Viking and Mars Pathfinder missions indicates that the operation on Mars is involved with an environment that causes the accumulation of dust on the hardware surfaces. The dust accumulation is a critical problem that hampers long-term operation of optical instruments and degrades the produced power efficiency of solar cells. To remove dust from surfaces one can use a similar mechanism as the windshield wipers of cars. Unfortunately, conventional surface wiping mechanisms are cumbersome, heavy, power gazzler and cannot be practical for such tasks as cleaning individual solar cells. On the other hand, IEMP bending actuator has the ideal characteristics of surface wiper. As shown in Figure 3, a simple, small, lightweight, low power consuming surface wiper can be constructed using an ionomer film. The ionomer responds to activation signals at the millisecond range and the angle of bending can exceed 180 degrees span and can cover 25-40 mm diameter of a circular area using about 40-50 mm long wiper. The wiper element can be set straight in the middle of the desired area and activated to sweep left and right by switching the electric field polarity. Also, it can be set on the side of the desired area and activated in one direction.

Figure 7: A view of the robotic arm that is driven by EAP actuators.
CONCLUSION
Two types of electroactive polymer actuators, which induce large displacement actuation, were employed in this study to develop robotic devices that emulated human hands. While the material performance is being enhanced, methods of controlling the actuation performance are being investigated. IEMPs are offering a large bending actuation and allow emulating the dexterity of human hand using lightweight material that consumes low power and is inexpensive to produce. For longitudinal displacement actuation, electrostatically activated films were rolled to form ropes and to serve equivalently to biological muscles. These electroactive polymers are showing a superior actuation displacement, mass, cost, power consumption and fatigue characteristics over conventional electromagnetic, EACs and SMAs. While the force actuation capability of EAPs is limited, their actuation displacement levels are unmatched. Telerobotic devices were constructed using EAP and allowed actuation of unique mechanisms. A multi-finger gripper was demonstrated to have large finger opening and closing with great mass carrying capability. A robotic arm was constructed similar to human hand using a composite rod, electrostatically driven rope and a 4-finger IEMP gripper as end-effectors. Currently, the practical application of IEMPs is constrained by the need to maintain the ionic constituents and preventing the film from drying. The equivalent of a biological skin is being investigated to protect the ion content of IEMP films. Encapsulation techniques are being investigated to assure the moisture containment and so far success was observed when using thicker platinum electrodes and voltage levels below 2-volts. To address the issue of dust on Mars, a unique surface wiper that is equivalent to a moving human finger was developed to allow removal of dust from windows and solar cells using low power, light-weight ionomer films.

ACKNOWLEDGEMENT
The results reported in this manuscript were obtained under a TRIWG task, Code S. Mr. David Lavery and Dr. Chuck Weisbin are the Managers of TRIWG. The authors would like also to express their appreciation of Brian Lucky, Cinkiat Abidin, Marlene Turner and Harry Mashhoudy, who are students at the Integrated Manufacturing Engineering Dept. of UCLA. These students contributed greatly to the fabrication of the robotic arm and the electrostatic rope muscle.

REFERENCES

