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ABSTRACT 

A study of emerging turbulent scales entropy production is conducted for a  supercritical shear 

layer as a precursor to  the eventual modeling of Subgrid Scales (from  a  turbulent  state) leading to 

Large Eddy Simulations. The entropy equation is first developed for .a real, nonideal fluid  using 

a validated all-pressure fluid model, and  the entropy flux and production terms  are identified. 

Employing a Direct Numerical Simulation (DNS) created  database of a  temporal 3D supercritical 

shear layer using the fluid model, the different contributions to  the irreversible entropy  production 

term  are  evaluated.  Both domain averaged and root-mean-square (RMS) terms  are computed at 

three different stages of the DNS, representing the timewise ascending, culmination and descending 

branches of the spatially averaged positive spanwise vorticity. The unfiltered and filtered databases 

are compared to evaluate the relative importance of irreversible entropy  production from viscous, 

Fourier heat diffusion and molar fluxes terms. The results show that  the average entropy production 

is dominated by the viscous terms at all stages of the evolution; however, the contribution to  the 

RMS of the molar flux term for both  the ascending and descending branches is  non-negligible. This 

latter result is traced to  the molar gradients  tending to  be smeared by emerging turbulent scales. 

Based on this finding, a physical picture of the layer evolution is presented involving competition 

between large scales entraining heavy  fluid from the lower stream  and forming strong  density and 

mass fraction gradients at spatially varying locations with time, and small scale turbulent  structures 

evolving but being damped by contact with the newly  formed strong  density gradient regions  which 

act similar to material surfaces. Analysis of the results shows that  the primary  contribution to  the 

molar flux dissipation for both  the average and  the RMS is the  mixture nonideality. 
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1 Introduction 

Numerous combustion systems, such as liquid rocket, gas turbine  and diesel engines, operate  at 

supercritical pressures, yet the current  understanding of turbulent  supercritical flows and  sprays is 

in  infancy. The experimental investigation of Brown and Roshko [l] of a high pressure shear layer 

and the recent observations of fluid jet disintegration under supercritical conditions by Mayer et 

al. [2], [3], [4] and Chehroudi et al. [5] constitute a scant empirical database for turbulent model 

validation. Under these circumstances, the approach of Direct Numerical Simulation (DNS) pursued 

to turbulence  transition followed  by a Large Eddy Simulation (LES) based upon Subgrid Scale 

(SGS) models extracted from the analysis of the DNS database  can  be very helpful for developing 

a turbulent  supercritical fluid model. Mayer and Tamura [ Z ]  conclude from  their observations that 

fluids injected in a chamber at supercritical conditions (with respect to  the injected fluid) behave 

very  differently from those injected in a subcritical conditions chamber and advise that liquid core 

and  drop  tracking modeling approaches using distribution functions are  inappropriate  to describe 

phenomena in the supercritical regime. Prior to having this information available, Oefelein and 

Yang [S] conducted a LES simulation tracking  drops in a Lagrangian manner and using the SGS 

model of Erlebacher et al. [7] derived from subcritical turbulence. The fluid model included real gas 

equations of state (EOS) and high pressure transport coefficients, but assumed phase equilibrium at 

a hypothetical material surface, did not include either high pressure solubility or Soret and Dufour 

effects, and  additionally neglected viscous dissipation. The results in [SI highlight the influence of 

the pressure on the spray evolution. For example, it is found that  the coupling between the spray 

and its surroundings increases with pressure due  to  the enhanced turbulent diffusion and to  the 

variations in the gas phase structures  stemming from changes in composition. Additionally, the 

LO,/Hz simulations showed that  both mixing and dispersion become stronger  functions of the SGS 
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fluctuations and of the flowing H2 large scale coherent structures as p increases, indicating that  an 

accurate,  supercritically based SGS model (and we note again that  the model in [6] is subcritically 

based) is crucial to obtaining  quantitatively validated predictions. The present study represents a 

step in this  direction. 

2 Fluid  Model  and  Governing  Equations 

The fluid model used in  this investigation is based on that developed by Harstad  and Bellan [8], 

[9], [lo] and  it  has been validated [9], [lo] for C ~ H I ~ / N ~  with Nomura et al.’s [ll] microgravity data 

for the entire  range of the  data encompassing both  the subcritical and supercritical regime. This 

model has been used by  Miller et al. [13] to develop a DNS of a C7H16/N- shear layer  where C7H16 

is the slower,  lower stream fluid. In [13] the simulation was stopped at a nondimensional time of 

100 (see definition below) and  the focus  was on the influence of the  thermal diffusion factors on the 

evolution of the layer and on the specific visual aspects  characteristic of the supercritical regime. 

It is noteworthy that even at this early stage of the layer, visual features were qualitatively similar 

to those observed by Chehroudi et al. [5] in  their experiments in that regions of strong  density 

gradients formed both in the braid and between the braids of the layer; these regions  were optically 

detected as wispy threads  emanating from the injected jet. Due to space restrictions, the published 

model equations will not reproduced here except for the essential equations needed in  the present 

derivation. 

2.1 Shear  layer  model 

The  temporal  shear layer configuration, initial conditions and numerics have been thoroughly docu- 

mented by  Miller and Bellan [12] with the classical nomenclature being adopted for the coordinates 
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(xI streamwise, 2 2  crosstream, z3 spanwise). The compressible form of the conservation equations 

for a binary mixture of general (Newtonian) fluids are: 

where p is the density, is the velocity, et = e + 2 1 4 2  is the  total energy (i.e. internal energy, e, 

plus kinetic energy), p is the thermodynamic pressure (the  temperature is T )  and Yh is the mass 

fraction of heptane  (the mass fraction of nitrogen is Yn = 1 - Yh). Furthermore, q~ is the Irwing 

- Kirkwood (subscript I K )  form of the  heat flux vector (see [14] and discussion below), J h  is the 

heptane mass flux vector and aij is the Newtonian viscous stress tensor 

where S,j is the Kronecker delta  function, p is the mixture viscosity  which  is in general a function 

of the thermodynamic state variables and S,j and S k k  are defined from eq. 5. According to [8] and 

[lo] ,  the form of the diffusional  fluxes  is: 

Jhj = - [JAj aBKYnYh pD/T m/aXj] , (7) 

JLj  = PD [aDafi/axj + YnYhmnmh/(&Tm)  (v,h/mh - v,n/mn) ap/axj] (8) 

where eq. 6 is the Irwing-Kirkwood form of the  heat flux ([14]); D is the binary diffusion  coefficient; 

the mass fraction Y is related to  the mole fraction, X ,  by m,Y, = mX, where m, is the molecular 

weight of pure species a! and  the mixture molecular weight  is m = Xnmn +Xhrnh;  the molar  volume 
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I /  is related to the density by = m/p; u , ~  is the  partial molar volume; CYD is the mass  diffusion 

factor;  and X;, is a  thermal conductivity. Also, cxIK and CYBK are the thermal diffusion factors 

corresponding to  the IK and  the Bearman-Kirkwood (subscript B K )  forms of the  heat flux ([14]), 

respectively; they  are the new transport coefficients that  are introduced by the Soret (in the molar 

fluxes) and  the Dufour (in the heat flux) terms of the  transport  matrix,  and  are characteristic of 

the  particular species pairs under consideration. Although currently  there is no general information 

as  to  the functional form of CYZK and CYBK with respect to  the primary variables (p, T ,  x )  and/or 

their magnitudes, it was  shown [lo] that they  are related through 

where h,, is the  partial molar enthalpy, and furthermore  Harstad and Bellan [20] were able to de- 

termine an approximate Q B K ( ~ ,  T,  x )  functional form for C7HI6/N2 through comparisons with  part 

of the  data  in [ll]. Moreover, Harstad  and Bellan [lo] have  shown that X;, does not correspond to 

the kinetic theory  (subscript KT ) definition of the thermal  conductivity in that limp+o X;, # X,*, 

but it is related to  the  thermal conductivity, X, through X;, = X + XnXh azK arBK&pD/m,where 

limp,o X = XKT. To calculate QD = 1 + Xa[illn(cpa)/dX,], the fugacity coefficients, va, are calcu- 

lated from the EOS. The Peng-Robinson EOS is  employed in conjunction with the above equations, 

yielding < 1% error over highly accurate EOSs, and D and X are calculated for the high ( p ,  T )  

regime as in 181. A reference p ,   p , ,  is obtained from the specified initial Reynolds number, Reo, and 

further used to calculate p ( T )  [13]. 

2.2 Entropy equation 

The entropy of a fluid within a region  may change due to  both reversible flux of entropy  through 

the fluid boundary, and  through irreversible entropy production [15]. The irreversible entropy 
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production is the dissipation and  it is inherently important in systems undergoing production of 

turbulent scales. For example, Liu et  al. [IS] have evaluated the subgrid energy dissipation to 

document the level of isotropy during  rapid  straining  to turbulence and used it as an indicator 

for developing SGS models. To understand  the evolution of the layer, our focus is on the  total 

irreversible entropy. 

Following Hirshfelder et al. [15], the entropy equation is 

where s is the  entropy per  unit mass, C j  represents the reversible  flux of entropy, g is the  rate of 

irreversible entropy  production  and D / D t  is the  substantial derivative. On  the other  hand, the 

differential thermodynamic expression of s yields 

where /.Ln and b h  are  the chemical potentials (partial molar Gibbs free energy), n, = pY,NA/m, 

and NA is the Avogadro number. By replacing the substantial derivatives on the right hand side 

of eq. 11 with the expressions from eqs. 1-4 and comparing the resulting  equation  with eq. 10 one 

where (gij/T)&/&j was rewritten as a function of Sij. Note that  the irreversible entropy expres- 

sion  eq. 14 is expectably  quadratic; it states  that g is the sum of viscous, Fourier heat flux and 
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molar flux contributions 

where according to eqs. 7-8 gmSs contains the  departure from mixture nonideality, o( O D ,  and  the 

Soret term, o( ( Y B K .  The question arises as to  the importance of each one of these  contributions 

at various stages of the supercritical  shear layer evolution and  the implication that  this has upon 

transition,  or lack of transition, to turbulence. 

3 Results  and  Discussion 

The  database used to perform the analysis is from a 3D temporal  supercritical  shear layer  DNS.  For 

these simulations, Reo based on the initial vorticity thickness, Sw,o, and on the velocity difference 

across the mixing layer, AUo = VI - U2, was 400, the initial Mach number was 0.4, the upper 

faster stream  (subscript 1) was initially pure nitrogen while stream 2 was initially pure  heptane 

with temperatures TI = lOOOK and T2 = 600K, respectively, ( p 2 / p l ) o  = 12.88 and po = 60atm. 

The grid has 200x232~  120 points, and measures 0.2mx0.232mx0.12m. The initial velocity profile, 

amplitudes of the forcing perturbations  and  boundary conditions are all discussed in detail  in [12]. 

Consistent with the validated results in [lo], CYZK = 0.1. 

3.1 Layer global evolution 

Figure 1 illustrates the nondimensionalized momentum thickness Sm/Sw,0 and product thickness 

SpplSpp,0 (both calculated as in [13]), the averaged positive spanwise vorticity and  the enstrophy as a 

function of the dimensionless time t* = tAU/S,,o to indicate the layer growth  and possible transition 

to turbulence. Due to  the initial velocity  profile, the spanwise vorticity is initially negative, and  the 
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creation of positive spanwise vorticity indicates the formation of turbulence scales. All of the Fig. 

1 curves indicate the formation of small turbulent scales culminating and being eventually damped; 

the momentum based Reynolds number, Rem 3 pAUSm/p = 1080 at  the culmination point of 

the averaged positive spanwise vorticity (and 1090 at  the culmination of S m / G w , ~ ) .  Although the 

streamwise vorticity, w1, displays the ‘mushroom’ type  features  characteristic of 3D scales, the 

‘collapse’ parameter [19] is modest (maximum - 7), indicating that  transition has not occurred. 

Physically, entrainment  and growth promote the evolution of the  turbulent scales, albeit this occurs 

here slowly compared to a subcritical  shear layer [12] due to the large density  stratification. However, 

even  once this process is  underway, a sustained layer growth and  transition to turbulence are not 

insured; the reason for this is the development of strong V p  regions  which act as material interfaces 

and  damp  the turbulence ([17], [lS]). Since the layer growth depends primarily on entrainment,  and 

since it is this  accelerated growth that promotes the appearance  and evolution of the small turbulent 

scales, this  damping mechanism may be enhancing the effect of density stratification. The long time 

behavior (Fig. 1) is nevertheless puzzling since ‘one would expect that once the turbulence scales 

dampen the density  gradients,  transition to turbulence would  proceed unopposed as mixing will 

dominate  entrainment.  In  fact Sp/SP,o ,  which measures local mixing, quantifying the effectiveness of 

the small scale processes and  the changes in  the local distribution of the species, displays a sustained 

growth, albeit at a slower rate after the culmination of S,/S,,O and of the averaged positive spanwise 

vorticity, indicating that local  mixing still proceeds at an increased pace. Considering the positive 

information indicating  potential  transition to turbulence and  the  spatial growth of the layer (see 

below), its decay is surprising. The results below  provide an explanation for this behavior. 
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3.2 Small  scale  irreversible  entropy  production 

The entropy contribution of the small turbulent scales is the difference between that of the DNS 

(i.e. unfiltered) and  that of the filtered flow field; here the filtered flow  field is obtained using a 

cubic top-hat filter with a filter width of 4max(Azl,  AX^, A q ) .  The  magnitude of the  three  terms 

for the unfiltered and filtered flow fields  is presented in Tables 1 for the average and 2 for the 

RMS at t* = 100,145 (culmination of the global positive spanwise vorticity  magnitude) and 170. 

Comparing the various contributions (Table 1 and Fig. 2), one notes that  the most important 

contribution to  the average dissipation is from gvis and that  the small scales contribute about 

25% to gvis (this number and  the following % may be filter size dependent) at all times. The 

contribution to  the  total dissipation from gmass is  two orders of magnitude smaller than  the viscous 

one and the small scales contribute 24%, 22% and 30%, respectively, to gmass at  the three times. 

The contribution of Stmp is  negligible, being three orders of magnitude smaller than  the viscous 

terms and  the participation of the corresponding small scales to gtmP is 0(10-2) at all times. The 

minute contribution of the small heat flux scales to  the  heat flux dissipation is totally consistent 

with the enhanced X magnitude at supercritical conditions and  the finding that  the T profile  always 

relaxes first (before p and Ya) under these circumstances [8] because of the enhanced effective  Lewis 

number [20]. 

A somewhat different picture emerges when analyzing the RMS entropy  production (Table 2 

and Fig.3), although gvis still  dominates and gt,emp is  also  negligible at all times. Simple calculations 

of differences  show that  the viscous small scales contribute - 30% of the gvis RMS at all times 

whereas the gmass small scales contribute 47%, 29% and 79% of the gmass RMS. Moreover,  while the 

small scales of the gwss RMS contribute O( 10-l) and O( at t* = 100 and 145, respectively, to 

the g RMS, at t* = 170 their  participation is 12% and therefore non-negligible. To understand the 
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augmentation of the small scales gmayy RIVE, braid and between braid contour plots of g, gvis ,  gtenLp 

and gmasswere all analyzed; due to space constraints only the braid plot of g at t* = 170 is shown in 

Fig. 4a .  For all three  terms,  the most important  contributions  (not shown) occur at locations of the 

largest I Vp I depicted in Fig. 4b at t* = 170, corresponding also to  the location of the largest mass 

fraction gradients  ([13]). However, these locations change with time  (not shown) and  the maximum 

value of I Vp I in the domain is reduced at t* = 145. Therefore, the emerging physical picture is as 

follows: Entrainment of the lower stream, heavier  fluid produces regions of high I Vp I while  mixing 

(which is limited by either small scale processes or by the  entrainment  rate) is initiated. As the 

turbulent scales appear,  they smoothen Vp, thereby reducing the gmass RMS and minimizing it at 

t* = 145. Further  entrainment from the lower stream produces again strong density  gradients,  but 

at different locations,  resulting in the increase of  gmass RMS. Therefore, the behavior of the layer 

is the direct consequence of the two competing processes of entrainment  producing  strong density 

gradients (a stabilizing effect) and mixing reducing the density gradients (a destabilizing effect). 

To understand which of the six terms in Jhj;Jhj govern the magnitude of gmass, plane averages 

were plotted as a function of x2/Sw,o  for both  the average and  the RMS at  the  three chosen times 

(not shown). The results are similar at all times in that  the (VJI)~ term is  negligible and so are  the 

two  cross terms  containing Vp. The nonideality (molar diffusion) term is the principal  contributor 

to gmSs everywhere except in the nitrogen side of the layer  where the cross term between Soret and 

molar  diffusion ( c c  VYVT) is of the same  magnitude; at other  crosstream locations the VYVT 

cross term is N 40% of the nonideality term  at t* = 100 and  its  contribution decreases to become 

practically negligible at t* = 170. The  quadratic Soret term ( c x  VTVT) is small but non-negligible 

compared to  the molar diffusion term (- 15%) at t* = 100,  however, it becomes insignificant at 

t* = 170. These  features are consistent with the magnitude of gtmP and with previous results [SI 

showing the rapid  relaxation of the VT terms.  Plots of the similar RMS terms  exhibit a dominant 
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contribution from the  term  VYVY followed  by the crossterm VYVT and finally by the VTVT 

term. Large peaks of the  VYVY  term  at  both t" = 100 and 170 correspond to regions of density 

gradients whereas no such peaks are found at t* = 145. Since no peaks are displayed by the  VYVT 

or the  VTVT  term,  this shows  decisively that  the gmass RMS correlates with I Vp I . The physical 

picture emerging from this comparison is the foremost importance of  non ideality in the gmass which 

is however not  dominant when the layer grows and culminates, but governs during  its decay. The 

Soret term is a non-negligible productor of average dissipation through  the molar diffusion crossterm 

and  the  quadratic  term  during growth and  at culmination but becomes unimportant  during decay 

whereas it's  participation to  the RMS is insignificant. However, since CYD decreases as the critical 

point is approached and is null at the critical  point, if the mixture is locally near the critical point, 

the Soret term will be more important at those localities. 

4 Conclusions 

The focus of this  study was the calculation of the irreversible entropy  production, Le. of the 

dissipation, of emerging small scales in a supercritical shear layer. This work  was motivated by the 

eventual goal of deriving SGS models using a DNS database representing transition to turbulence; 

indeed one of the main goals of the DNS/SGS/LES protocol is to embed into  the SGS the correct 

small scale behavior which is portrayed by the dissipation. A methodology for exploring this 

essential aspect of the small scales has thus been developed by first deriving the entropy equation 

for a real fluid with  mixture nonideality, and  then identifying the source terms of this equation 

with either the reversible flux of entropy or the irreversible entropy  production. The irreversible 

contribution was then calculated using a database from a DNS of a temporal  supercritical shear 

layer conducted with a validated fluid model. 
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For the conditions of this DNS, the layer did not reach a  transition state, although  the mornenturn 

thickness and  the averaged positive spanwise vorticity both  exhibited regions of sustained growth 

and the product thickness continued ascending; the momentum based Reynolds number at  the 

culmination point of the averaged positive spanwise vorticity was 1080. Past this culmination 

point, the layer  weakens and  the reasons for this  are explained using calculations of the irreversible 

entropy production.  These results show that .although the average dissipation is dominated by the 

viscous contribution, the RMS is dominated by the molar dissipation before and after  transition 

and by the viscous dissipation at transition.  The reasons  for this  are unraveled by comparing the 

regions of strong dissipation with those of significant density and mass fraction  gradients. From this 

comparison, the evolution of the shear layer appears  to  be  the result of the competition between 

entrainment which creates regions of strong  density gradients while also promoting the formation 

of small turbulent scales, and  the small scales which  once  evolved proceed to smoothen  gradients 

while being themselves damped by evolving  new gradients at  other locations. To understand which 

fundamental physical phenomena are responsible for the dissipation, a detailed assessment of the 

contribution of various terms was made  both for the average and  the RMS. The results show that 

for the conditions of the calculation the major  participation to  the average dissipation is from 

the viscous term  and  that  the small scales contribute  about 25% of the viscous dissipation. The 

molar  fluxes contribution is  two orders of magnitude smaller than  the viscous one followed  by 

that of the  heat flux terms.  The principal contribution to  the RMS is also due to  the viscous 

dissipation, however, the most active small scales with respect to  the corresponding part of the 

dissipation are those associated with the molar flux away from the culmination of the positive 

averaged spanwise vorticity. Moreover, the molar  fluxes  RMS small scales progressively  become 

more important 

contribution to 

contributors of the  total RMS dissipation during  the layer evolution. The primary 

the RMS molar flux dissipation is due to the  quadratic molar diffusion terms, 
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followed by the Soret crossterm with the molar diffusion. Although the  quadratic Soret term is small 

by comparison with the first  two terms,  its  contribution becomes  progressively  more important as 

conditions are closer to  the critical point. Finally, all terms  proportional to pressure gradients  are 

negligible. 

Since both  mixture nonideality and Soret effects are non-negligible contributors  to  the dissipation 

RMS under supercritcal conditions, and since it was  previously concluded that  both mixing and 

dispersion become stronger functions of the SGS fluctuations with increasing pressure [6], this 

highlights the  importance of both of these effects in the modeling of supercritical  turbulent flows. 

ACKNOWLEDGMENT 

This  study was conducted at the  Jet Propulsion Laboratory, and sponsored jointly by the Air 

Force  Office of Scientific Research under the direction of Dr.  Julian Tishkoff and by the Army 

Research  Office under the direction of Dr. David Mann under an interagency agreement with 

The  authors would  like to  thank Dr.  Kenneth G. Harstad of the  Jet Propulsion Laboratory 

for helpful discussions. 

References 

[l] Brown, G. L. and Roshko, A.,J.  Fluid Mech., 64(4), 775-816, 1974 

[2] Mayer, W. and Tamura, H., Journal of Propulsion and Power, 12(6), 1137-1147, 1996 

[3] Mayer, W., Schick, A., Schweitzer, C. and Schiiffier, M., AIAA 96-2620, AIAA/SAE/ 

ASME/ASEE 32d Joint Propulsion Conference, 1996 

[4] Mayer, W., Ivancic, B., Schik, A. and Hornung, U., AIAA .98-3685, 34th AIAA/ASME/ 

SAE/ASEE Propulsion Conference, 1998 

14 



151 Chehroudi, B., Talley, D. and Coy, E., AIAA 99-0206, 37th Aerospace Sciences Meeting, 1999 

[6] Oefelein, J. C.  and Yang, V., AIAA 96-0085, 34th Aerospace  Sciences Meeting, 1996 

[7] Erlebacher, G., Hussaini, M. Y., Speziale, C. G. and Zang, T. A,. J.  Fluid  Mech., 238, 155-185, 

1992 

[8] Harstad, K. and Bellan, J., Int. J .  Heat Mass Z"Fansfer, 41, 3537-3550, 1998 

[9] Harstad, K. and Bellan, J., AIAA 99-206, Joint AIAA/ASME/SAE Propulsion Meeting, 1999 

[lo] Harstad, K. and Bellan, J., An dl-pressure fluid drop model applied to  a binary  mixture: 

heptane in nitrogen, accepted for publication in Int. J.  of Multiphase  Flow, 1999 

[ll] Nomura, H., Ujiie, Y. ,  Rath, H. J.,  Sato,  J.  and Kono, M., 2flh Symp. (Int.)  on Comb., 

1267-1273,  1996 

[12] Miller, R. S. and Bellan, J., J. Fluid  Mech. 384, 293-338,  1999 

[13] Miller, R. S., Harstad, K. and J. Bellan, J., Direct numerical simulations of supercritical fluid 

mixing layers applied to heptane  nitrogen,  submitted for publication to J.  Fluid  Mech., 1999 

[14] Sarman, S. and Evans, D. J.,Phys. Rev. A45(4), 2370-2379,  1992 

[15] Hirshfelder, J. O., Curtis,  C.  F.  and  Bird, R. B., Molecular  Theory of Gases  and  Liquids, John 

Wiley and Sons, Inc., 1964 

[16] Liu, S., Katz,  J.  and Meneveau, C., J.  Fluid  Mech., 387, 281-320, 1999 

[17] Hannoun, I. A., Fernando, H. J. S. and List, E. J., J.  Fluid Mech. 189, 189-209, 1988 

[18] Briggs, D. A., Ferziger, J. H., Koseff, J. R. and Monismith, S. G, J.  Fluid  Mech., 354, 175-208, 

1998 

15 



[19]  Moser, R. D. and Rogers, M. M., Phys. Fluids, A3(5), 1128-1134,  1991 

[20] Harstad, K. and Bellan, J., Int. J .  Heat Mass Dunsfer, 42, 961-970,  1999 

16 



Time t* = 100 t* = 145 t* = 170 

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 

gmss 3 . 1 7 ~  lo5 2 . 4 2 ~  lo5 3 . 2 2 ~  lo5 2 . 5 0 ~  lo5 2 . 1 8 ~  lo5 1 . 5 3 ~  lo5 

9 1 . 5 8 ~  lo7 1 . 1 8 ~  lo7 1 . 6 4 ~  lo7 1 . 2 3 ~  lo7 1 . 4 3 ~  lo7 1 . 0 6 ~  lo7 
Table 1: Average Entropy  Production based on Unfiltered and  Filtered  Quantities 

Time t* = 100 t* = 145 t* = 170 

Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 

gVis 4 . 1 1 ~ 1 0 ~   2 . 8 5 ~ 1 0 ~   3 . 7 4 ~ 1 0 ~   2 . 6 2 ~ 1 0 ~   3 . 2 4 ~ 1 0 ~   2 . 1 8 ~ 1 0 ~  

9t-p 2 . 3 7 ~  lo5 2.31 X lo5 1 . 6 7 ~  lo5 1 . 6 4 ~  lo5 7 . 7 8 ~  lo4 7 . 7 2 ~  lo4 

gmSs 1 . 7 3 ~ 1 0 ~   9 . 0 9 ~ 1 0 ~   9 . 8 0 ~ 1 0 ~   6 . 9 9 ~ 1 0 ~   1 . 6 3 ~ 1 0 ~   3 . 4 1 ~ 1 0 ~  

9 4.21 x lo7 2 . 9 3 ~  lo7 3 . 8 2 ~  lo7 2 . 6 8 ~  lo7 3 . 2 8 ~  lo7 2.21 x lo7 

Table 2: Root-Mean-Square Entropy  Production based on Unfiltered and Filtered  Quantities 
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Figure Captions 

Figure 1. Momentum (-) and  product ( a  . - . .) thickness, enstrophy (- - -) and averaged 

positive spanwise vorticity (- - - -) a s  a function of time. 

Figure 2. Unfiltered (U) and filtered (F) plane averages of the various contributions to  the 

averaged dissipation at  t* = 100 (2a), 1'45 (2b) and 170 (2c). g,,U (-)) gVi,F (- - -)) gmassU (- 

. - . -), gmossF (- .. - .. -), 9tempU (- -) 9 StempF (. - 9. 

Figure 3. Unfiltered (U) and filtered (F) plane averages of the various contributions to  the RMS 

dissipation at t' = 100 (3a), 145 (3b) and 170 (3c). g ~ 8 U  (-), gviaF (- - -), gmassU (- - e -), 

gmssF (- - - -  -), gtmpU (- -), gtmnpF (- * * * e ) .  

Figure 4. Contours of the  total unfiltered dissipation in the braid  plane  (a)  and the magnitude 

of the density  gradient in the braid plane (b) at t* = 170. 
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