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Abstract 

This paper computes  and  compares the  capacities of M-ary PPM on various idealized  channels 
that approximate  the optical  communication channel: (1) the  standard  additive white  Gaussian noise 
(AWGN)  channel; (2) a more  general AWGN channel (AWGN2) allowing different variances in signal 
and noise slots; (3) a  Webb-distributed  channel  (Webb2); (4) a Webb+Gaussian  channel,  modeling 
Gaussian thermal noise  added to Webb-distributed  channel outputs. We were  able  to define  a  suitable 
bit-normalized SNR parameter p h  such that all o f  these channels with soft outputs yield  brick-wall 
thresholds on the  minimum acceptable  value of pf, above which  reliable communication  is theoretically 
possible and below which it is not possible. Furthermore, under all of these  models with soft channel 
outputs,  the bit-SNR  thresholds for different  values of M differ  from each  other by the “simplex-to- 
orthogonal  penalty” 9. Under both the AWGN2  and Webb2 models, the  gap  between  the capacities 
of hard-  and soft-output  channels is about 3 dB at the (nonzero) code  rate giving the  optimum hard- 
output bit-SNR. 

1 Introduction 

In  an optical communication system using M-ary pulse position modulation (PPM) and an avalanche 
photodiode (APD) detector, the number IZ of photons absorbed is Poisson distributed with mean i related 
to the total optical power P ( t )  and to the PPM slot time T, by I? = 2 1;“ P ( t ) d t ,  where q is the detector’s 
quantum efficiency and hu is the photon energy. For PPM  signaling,  the mean number of photons i 
absorbed in a given PPM  slot  depends on whether the signal is present or  absent in that slot. In response 
to n absorbed photons, the APD generates an “avalanche” of q electrons with a  complicated conditional 
probability distribution derived by McIntyre (see reference in [I  I ) ,  and the probability mass function p ( q )  
is obtained by averaging this conditional probability over the Poisson-distributed n. Alternatively, p ( q )  
can be approximated by a simpler continuous probability density derived by Webb (see  reference in [l]): 

( I +  GFlz 
(q - GI?)(F - 1) >12 exp [-- (q - GI?)~  - G i  

P ( 9 )  = d m  2 i G 2 F  (1 + ( c ] - G i ) ( F - l )  G F n  ’ q ’ s  

(1) 
where G is the APD gain, and F = k , f fC  + (2 - 1/G)(1 - k , f : f )  is an excess noise factor, given in terms 
of the gain and the ionization ratio k , f f .  The Webb model for  PPM  signaling (here called Webb2) uses 
the density in eq. (1) twice: once using the average number I?l of photons in the signal slot, and a second 
time using the average number I?o of photons in the M - 1 non-signal slots. The final output of the APD is 
then modeled as a sum of an electrical current due to the Webb-distributed electrons,  along with Gaussian 
thermal and  surface  leakage currents (here called the Webb+Gaussian channel). 

It is known [ 11 that the Webb density is well approximated by a  Gaussian away from its tails, and that 
the approximation accuracy improves as 12, and i o  get large. Our objective in this paper is to develop 
an understanding of the role of various optical parameters on the  capacity of an optical communication 
system, and to this end we  compute and compare the capacities of various idealized channels which might 
be used to approximate the optical communication channel: (1) the standard additive white Gaussian noise 
(AWGN) channel; (2) a more general AWGN channel (AWGN2) allowing different variances in signal 
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and noise slots; (3) a Webb-distributed channel (Webb2) modeling the output of an APD in the absence of 
thermal noise and surface leakage current; and (4) a Webbt-Gaussian channel, modeling Gaussian thermal 
noise and surface leakage current added to Webb2 channel outputs. We also  compare  the  capacities achiev- 
able with soft- and hard-decision channel outputs. The appeal of using soft decisions lies in the ability to 
take advantage of better performing codes  (e.g., turbo codes), which admit soft decoding algorithms. 

2 Capacity of M-ary  PPM  on  the AWGN Channel 

First we consider the case where the signal x is transmitted on a standard AWGN channel with noise 
spectral density No/2 .  Because of the symmetry of orthogonal signals and of the AWGN channel, capacity 
is achieved with an equiprobable M-ary source distribution p(x  x,j) =z I /M, b’xj E S ,  where S = 
{XI,  x?_, . . . , X M } ,  and the capacity reduces to 

where y = (y1,  . . . , y ~ )  is the received vector. This capacity expression assumes  no restriction on the 
channel output. For orthogonal codes on the AWGN channel, x,; = (x,;, , . . . ~ .x iM) = (0,  0, 0, . . . , @, 0, 
. . . , 0), where f i  = d m  is in position , J ,  and E,s refers to the energy per M-dimensional symbol. 
We have 121 

M e - ( J l - x , i ) z / 2  

P(y~x, j )  = n 
i=l  l/zn 

and the capacity of orthogonal signaling follows from (2) as 

Figure 1 shows this capacity for various PPM dimensions M as  a  function of the minimum required bit- 
energy-to-lzoise ratio, ,oh = Eh/No = 9 = p. To compute C for large dimensions M ,  it is necessary 
to resort to Monte Carlo  methods. (Similar methods were used for the computations in 13, Appendix 11.) 
Note that all of the curves approach “brick-wall” thresholds on Eh/No,  below which the capacity falls to 
zero. 

3 Capacity of M-ary  PPM  on  a  More  General  Gaussian  Channel 

Now we extend the analysis to cover a “double Gaussian” problem (here  called AWGN2), related more di- 
rectly to the  PPM  optical model and characterized by different means and variances depending on whether 
the signal is present or absent. Given a transmitted signal x = x,i, the components of the received vector y 
are taken  to be conditionally independent Gaussian random variables, identically distributed except for y,;: 
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Figure 1: Capacity of M-PPM (or any other M-ary orthogonal signaling) on the AWGN channel 

Even though the channel model uses four parameters, the capacity is determined by just two parameters, 
and can be written as 

where po = ( r n l  - r n ~ ) ~ / a ~ ,  a = (0-12 - ot)/(nzl - f 7 z o ) 2 ,  v = ( V I ,  . . . , u M ) ,  vi = ui + i u f a J P ,  and 
{ U I  , . . . , u ~ }  are independent Gaussian random variables: u 1 is N(&, 1 + apo)  and ui is N ( 0 ,  1) for 
i > 1. Note that this equation reduces to the standard AWGN capacity for orthogonal  signals  (eq. 4), 
when a + 0, i.e., when the variances in the signal and non-signal slots  become  equal.  Figure  2 shows 
the capacity obtained by Monte  Carlo integration for the AWGN2 model,  plotted  for different values of a 
versus a bit-normalized SNR parameter defined by = e. 

2 

4 M-ary PPM Capacity  on  the Webb Channel 

The capacity of M-PPM on a Webb channel is conveniently computed by substituting  a standardized 
(scaled-and-translated) Webb random variable w for the Webb-distributed electron  count q in (1). Defining 
q = Glz + w l / i c ’ F ,  the probability density for the standardized Webb random variable w simplifies to 

(8) 

where B = ( F ’ / 2  - F-1/2)/Z‘/2. Note that this standardized Webb probability reduces exactly to a stan- 
dardized Gaussian when the parameter ”+ 0. 

The optical PPM problem is modeled as  a “double Webb” channel (Webb2), for which the random 
number of electrons produced by the  APD is given  by 41 = GZl + w , i d m  in the signal slot j ,  and 
yo = GZo + wid= in the non-signal slots i f j ,  where {wl , . . . , w n }  are  independent standardized 
Webb random variables with probability density given by (8). 

The capacity of the Webb2 channel is obtained by Monte  Carlo integration of (2) using the appropriate 
Webb densities  for  the  channel transition probabilities p(y1x). Figure 3 plots  the capacity of 256-PPM 
on a Webb2 channel for various values of l z , y  = i i l  - i i o  versus a  bit-normalized SNR parameter defined 
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Figure 2: Capacity of the AWGN2 channel for PPM dimension M = 256. The case a = 0 is equivalent to 
the standard AWGN channel. 
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by p h  = y ,  where po = (E{ql - qo})2/Var{qo}. Note that this definition of p/,  for the Webb2 channel 
is exactly analogous to the one given earlier for the AWGN2 channel,  and  the  series of Webb2 capacity 
curves in Figure 3 approach the capacity curve of the AWGN channel (shown for reference) as 12,s gets 
large. 
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Figure 3: Capacity of 256-PPM for AWGN and Webb2 channels. 

Figure 4 plots the Webb2 channel capacities for n,s = 100 and different values of M .  This figure 
also shows the  corresponding  M-PPM  capacities of the AWGN channel for comparison. Note that the 
Webb2 capacities, plotted versus Ph,  all approach the same brick-wall thresholds (within the statistical 
uncertainties of the Monte  Carlo integration) as those characterizing  the AWGN channel.  Furthermore,  for 
both the AWGN and Webb2 channels, these brick-wall thresholds, for  different values of M ,  are separated 
by the (logarithm of the) factor ( M  - l)/M, which represents  the loss for using orthogonal signals instead 
of simplex signals. This penalty is as high as 3 dB  for using 2-PPM instead of BPSK, but diminishes 
rapidly for larger M .  In the case of the (coherent) AWGN channel, this “simplex-to-orthogonal” penalty 
can  be avoided, and  all of the brick-wall thresholds moved to the ultimate capacity limit of - 1.59  dB, by 
substituting simplex signals  for the orthogonal PPM signal set. In the case of the (noncoherent) optical 
channel, such a substitution is not possible in the physical system, but the  comparison still gives a simple 
numerical yardstick for comparing Webb2 channel capacities for different values of M .  
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Figure 4: Capacity of AWGN and Webb2 channels for  different PPM sizes. 
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5 Comparison  of  Hard-Decision  and  Soft-Decision  Capacity  for  M-ary PPM 
on  the  Webb+Gaussian  Channel 

When a hard-decision detection scheme is used, the decoder  operates on PPM symbol decisions from the 
demodulator, not individual soft counts.  The modulator output is the PPM symbol having the maximum 
slot count.  This hard-decision channel is an M-ary  input,  M-ary output, symmetric  channel with capacity 
given by 

c = log, M + (1 - t) log,(l - E )  + t log2("- 
E 

) bits per  channel use, (9) 
M - 1  

where E is the probability of incorrect symbol detection: 

and pi (.) and po( . )  are the channel symbol probability densities for signal and nonsignal slots, respectively. 
Figure 5 compares  capacities  for the hard-output and soft-output AWGN2 channels,  for the case of 

M = 256. A  similar comparison of capacities is shown in Fig. 6 for the  hard-output and soft-output 
Webb2 channels.  The hard-output Webb2 capacity was computed in [4]. 
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Figure 5: Capacity of 256-PPM on the hard- and soft-output AWGN2 channels. 

The capacity curves for both the AWGN2  and the Webb2 channels show that a minimum value of &, 
is reached at a  nonzero  code rate. Unlike the soft-output channels, which exhibit monotonically better 
efficiency in terms of the bit-normalized SNR parameter ,ob as the  code  rate  (and hence the capacity per 
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channel use) is reduced toward zero, the bit-normalized SNR efficiency of the hard-output channel turns 
around if the capacity per channel use is lowered below about 4 bits per channel use. This implies that an 
optimum  code rate of about 1/2 will achieve the lowest ,ob for  the hard-output channel, while the soft-output 
channel achieves lowest pb in the limit as the code rate goes to 0. 
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Figure 6: Capacity of 256-PPM on the hard- and soft-output Webb2 channels. 

6 Conclusions 

This paper has analyzed four idealized channel models that can be used to approximate an APD-detected 
optical communication  channel. We were able to define a suitable bit-normalized  SNR parameter ,ob such 
that all of these channels with soft outputs yield brick-wall thresholds on the  minimum acceptable value 
of P h  above which reliable communication is theoretically possible  and below which it  is not possible. 
Furthermore, under all of these models with soft channel outputs,  the bit-SNR thresholds for different 
values of M differ from each other by the “simplex-to-orthogonal penalty” . Under both the AWGN2 
and Webb2 models, the gap between the capacities of hard- and soft-output  channels is about 3 dB at the 
code rate giving the optimum hard-output bit-SNR. 
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