OH column abundances and their diurnal variations have been measured from the JPL Table Mountain Facility since Aug 1997. Peak OH column abundances are found near local noon and a diurnal asymmetry is observed in which OH column abundances in the afternoon are typically larger than at the corresponding solar zenith angle in the morning. The largest noontime OH column abundances are found in summer and the smallest in winter. We are using the Caltech/JPL one-dimensional photochemical model (Allen et al. 1981) to examine the diurnal variations and to quantify the processes that are responsible for the observed behavior. Our first step has been to examine the sensitivity of the photochemical model to variations in selected input parameters. Based on these studies, we find the OH column abundance is most sensitive to changes in the concentrations of O3S and H$_2$SO, to changes in the photolysis rates of O3S and H$_2$SO, and to changes that affect the net rates for O(3P,1SD) + H$_2$SO → 2OH, OH + HOS → H$_2$SO + O$_2$, and O + HOS → OH + O$_2$. The model has little sensitivity to changes in the concentrations of Cl$^-$yS, NO$^-$yS, CH$_4$yS, and CO. Other instruments have provided vertical profiles of O3S, temperature, and H$_2$SO for the Table Mountain location at times that are coincident with some of the OH column abundance measurements. These data will be used as constraints on the diurnally-varying photochemical model calculations. Results from comparisons between the model calculations and OH column abundance measurements will be presented.