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Parallel adaptive mesh  refinement (AMR) is  an important numerical  technique that leads to 
the efficient  solution of many  physical  and  engineering  problems.  While  some AMR libraries 
have  been  designed, there are  many  advantages to considering alternative  approaches  based 
on  language  paradigms  and standards. In this paper, we describe  how AMR program- 
ming  can  be  performed in an  object-oriented way using the modern aspects of Fortran 90 
combined  with the parallelization  features of OpenSIP.  This  unique  approach  combines 
efficiency, portability, and  maintainability for the application  scientist that requires  pro- 
gramming  flexibility  beyond  the  features a static library may  provide. 

Introduction 

Adaptive  methods  are extremely useful in the solution of large scientific problems  with  complex 
geometry, but  sophisticated programming and powerful computational  resources  are  required. 
Since ANIR is  complicated, involving the  manipulation of abstract  structures like hierarchical 
distributed mesh  components of varying  resolution,  scientists  currently rely on  libraries  to hide 
the complexity of message passing on  large distributed memory parallel  systems. Designing 
an all-encompassing  library, however, that is suitable for any kind of AMR application is ex- 
tremely difficult-probably impossible. Some researchers are pursuing structured AMR library 
approaches  using the C++ programming  language [5, 61, but these have not  yet demonstrated 
high performance,  scalability, or popularity for a large class of  AMR applications. 

We introduce an exciting  solution using language-based development that excels with  the 
strengths of an SMP/ccNUMA  environment and matches  MPI performance in a message passing 
environment. Our  approach, based entirely  on well-defined standards, reduces  programming 
complexity, preserves the investment in  existing  Fortran-based solvers, and benefits  from years 
of compiler optimization techniques. Indeed,  this is the first work that  demonstrates a scalable, 
efficient? and  complete  approach  to AMR that integrates emerging trends in high  performance 
computing while returning control of software development to  the user, rather  than relying 
on the  static  features of a library. We illustrate  this approach by applying  it  to Balsara’s 
RIEMANN framework, see [l] and references therein. 

Language-Based  Design for Parallel AMR 

Our approach  combines the parallelizing directives of OpenMP with the  Fortran 90 standard 
for structured AMR. We have developed efficient, parallel, and scalabIe methods for performing 
all of the  tasks  required.  This  includes  creation  and  deletion of AMR hierarchies,  processing 
of inter-grid  transfers  across/within levels, and  the solution of these grids  anywhere  in  the 
hierarchy in a load balanced,  and  parallel, way. 

Object-Oriented AMR with Fortran 90 

Introducing  object-oriented  programming  techniques  with  the new features of Fortran 90 (3, a] 
makes i t  possible build  intricate AMR structures  that  are efficient. While the  array-syntax 
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and dynamic memory management  features are most familiar, new features  including  mod- 
ules,  derived-types  (user  defined types), use-association,  generic  interfaces, and (safe)  pointers, 
simplify AMR data  structure design. 

Fortran 90 allows us to  create, manage, and delete  grid  types that  are used in  the  solution 
process. These  grids can overlap and  support  parent, child, and sibling  relationships  across 
AMR levels along  with the  interpolation of boundary  conditions.  Collections of grids at a given 
level in the AMR hierarchy  totally cover the regions that need refinement. Fortran 90 modules 
allow one to define  specific  features that can be applied to  the grids,  either as a collection or 
individually.  Additional  features useful for the solution  process  can be included  in the module 
as well, and  when used in  main  programs that allows objects  to  be  created.  State  changes  in  the 
objects  are  limited  to  the  routines  that  the  module makes public.  This  object-oriented  design 
allows all  grid  operations  to  be  completely  parallelized  including  the  regridding  strategies [2]. 

Using   OpenMP for AMR  Paral le l izat ion 

The features of OpenMP  that complete our  approach  are  the  directives  that  support data 
distribution,  generation of threads for independent  loops,  and  the af in i ty  clause that allows 
one to  support  the “owner-computes”  rule for  efficient processing. We have also implemented a 
very efficient load-balancer to ensure  that grid  objects  are  created  and processed in  the hierarchy 
in a balanced, and parallel way. Figure 1 briefly shows the use of Fortran 90 object  abstractions 
and  the directives. The code  segment  illustrates how a series of dynamically  defined  grids  is 

type   ( s ing le-gr id) ,   po in te r  : :  t h i s  
i n t ege r ,  dimension(max-single-grids) : : array-f  or-af f i n i t y  
! $SGI  DISTRIBUTE array-for-aff   in i ty(cyc1ic  (1) 1 
!$OW PARALLEL DO PRIVATE( ig r id ,  t h i s )  
! $OMP& SHARED(leve1, gr id- is-act ive,   pointers- to-gr ids)  
! $SGI+AFFINITY ( i g r i d )  =DATA (array-f  or-af f i n i t y ( i g r i d 1 )  

do i g r i d  = 1, max-single-grids 
i f   ( g r id - i s - ac t ive ( l eve1 ,   i g r id )  == 1) then 

t h i s  => pointers-to-grids(leve1, ig r id)%sgp 
ca l l   wrapper -so lver -s ingle-gr id   ( th i s ,  . . . I  

end i f  
end do 
Figure 1: OpenMP/Fortran 90 object-oriented  multi-grid  parallel structured AMR. 

processed at  an AMR level, and how a  Fortran 90 wrapper is  used to call an  existing Fortran 77 
solver. The  affinity clause, and  the parallel  do,  ensure that processors work on the grids that 
they themselves own’. While  not  all the  details are gi.ven here, this  demonstrates  that all steps 
associated  with  constructing  hierarchical  grids,  managing  their  solution across various AMR 
levels, and  supporting  their load balance,  can  be accomplished based entirely  on a parallel 
compiler  language-based  approach. A secondary benefit is that  the code can run sequentially 
by simply  ignoring the directives. 

‘&lost of the  arrays could be replaced  with  lists, but arrays  are  demonstrated for simplicity.  Module and 
object definitions have also been omitted in this  abstract. 
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# grids 

125 
150 
175 
200 
250 
330 
375 
450 
525 
625 
740 

round-robin 
binning 
186.09 
180.38 
153.88 
113.76 
128.61 
118.60 
105.73 
94.15 
90.50 
78.33 
81.13 

1st load 
imbalance 

64.15 
39.91 
26.62 
5.41 

22.20 
8.04 
9.00 

13.40 
6.44 
4.88 
5.67 

2nd  load 
imbalance 

64.15 
27.78 
24.19 
4.97 
3.46 
0.74 
1.05 
2.47 
0.73 
0.63 
1.28 

3rd  load 
imbalance 

64.15 
26.77 
23.54 
4.97 
2.55 
0.40 
0.24 
0.33 
0.11 
0.12 
0.10 

4th load 
imbalance 

64.15 
26.77 
23.54 
4.97 
2.55 
0.40 
0.20 
0.16 
0.05 
0.04 
0.03 

5th load 
imbalance 

64.15 
26.77 
23.54 
4.97 
2.55 
0.40 
0.20 
0.12 
0.05 
0.04 
0.03 

6th  load 
imbalance 

64.15 
26.77 
23.54 
4.97 
2.55 
0.40 
0.20 
0.12 
0.05 
0.04 
0.03 

Table 1: Percentage load imbalance for successive iterations of the load  balancer. 

Language-Based,  Dynamically  Load  Balanced,  Parallel  Performance 

In AMR,  where  changes  in  computational work can only be  estimated at run-time,  applications 
require  dynamic  load  balancing over each level in the AMR hierarchy. We have designed a 
specialized Ioad balancer that is uniquely well-suited for AMR applications. The load  balancer 
is  iterative,  and improves in quality with successive iterations.  It utilizes a pairwise  exchange 
of load  assigned to available  processors  such that  an exchange causes a  maximal  reduction  in 
load  imbalance  between  pairs of processors. The  computational cost of the algorithm is  low, 
and  it  can  be parallelized easily. 

Table 1 compares  round-robin  binning of tasks  to our load balancer  where 125 to 740 tasks 
are applied to 100 processors. There is a 300% difference between the minimum and  the 
maximum  load, which is assigned randomly. Note that  the round-robin  approach  has  a  large 
percentage  load  imbalance, while our  approach quickly reduces load imbalance to less than 1% 
in  a  small  number of iterations.  The  load  associated  with  updating  a  single  grid is proportional 
to  the number of computational zones on the grid.  Table 2 shows the cumulative  speedup on 

an AMR  level. part-;rJvill explore the language-driven 
implementation  alon  performance  enhancing schemes in 

will also  present  applications  to several interesting  elliptic  and 
hyperbolic  systems. 

# of Processors 

64.75  35.60 19.60  10.03  5.21  2.66 1 Cumulative  Speedup 
0.42 0.77 1.40  2.74 5.27  10.32 27.52 Time (seconds) 

64 32 16 a 4 2 1 

Table 2: Performance  results for scalability on processing an AMR  level. 
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