Dynamic pair breaking in cuprate superconductors via injection of spin-polarized quasiparticles in perovskite F-I-S heterostructures

N.-C. Yeh a, 1, J. Y. T. Wei a, C. C. Fu a, and R. P. Vasquez b

aDepartment of Physics, California Institute of Technology, Pasadena, CA 91125, USA.
bJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.

Abstract

We report experimental evidence of dynamic Cooper pair breaking induced by spin-polarized quasiparticles in cuprate superconductors by studying the critical current density and quasiparticle density of states of ferromagnet-insulator-superconductor (F-I-S) heterostructures. The spin diffusion length and relaxation time are also estimated.

Non-equilibrium superconductivity has been extensively studied since the 1970's [1]. Most of the investigation has focused on the effects of simple quasiparticle (QP) injection and extraction in conventional s-wave superconductors. In contrast, there is insufficient theoretical understanding of spin-polarized QP transport in superconductors, largely due to the complications of combined non-equilibrium [1] and magnetic pair-breaking effects [2] induced by spin-polarized currents. Recently, the concept of spin injection has been investigated in high-temperature superconductors (HTS) by passing an electrical current through a perovskite ferromagnetic manganite to introduce spin-polarized quasiparticles (QP's) [3,4]. However, the reported suppression of critical currents in the perovskite ferromagnet-insulator-superconductor (F-I-S) appear to be primarily induced by Joule heating. To amend this problem, we adopted a pulsed current technique and in-situ thermometry [5], so that the effect of Joule heating is limited to < 10 mK. In this work, we report macroscopic and microscopic experimental evidence of dynamic pair breaking induced by spin-polarized QP currents in perovskite F-I-S heterostructures. These results are compared with control samples of N-I-S heterostructures (N: non-magnetic metal).

The F-I-S and N-I-S samples are fabricated using the pulsed-laser deposition technique [5]. The chemical formulae and thicknesses of the constituent layers are:

- F: La0.7Ca0.3MnO3 (LCMO) and La0.7Sr0.3MnO3 (LSMO), 100 nm.
- I: SrTiO3 (STO), 2.0 nm; and yttria-stabilized-zirconia (YSZ), 1.3 nm.
- N: LaNiO3 (LNO), 100 nm.
- S: YBa2Cu3O7 (YBCO), 100 nm.

The effect of spin-polarized current I_m on the critical current density (J_c) of YBCO is shown in Figure 1(a), and the absence of effect in the N-I-S sample is illustrated in Figure 1(b). We note that the suppression of J_c in F-I-S becomes statistically...
near T_c, due to the diverging QP relaxation time $[1]$. In analogy to the simple QP relaxation through inelastic electron-phonon scattering $[1]$, we may assume a relaxation process of spin-polarized QPs through the spin exchange interaction. The relaxation time is given by $\tau_s(T) \approx 3.7\tau_{ex} k_B T_c/(\Delta(T))$, where $\tau_{ex} \approx (h/E_{ex})$ is the interaction time associated with the exchange energy $E_{ex} \approx 30$ K in YBCO $[5]$. Hence, for an average d-wave superconducting energy gap $\Delta(T) \approx \Delta_d[1 - (T/T_c)]^{1/2}$ with $\Delta_d \approx 20$ meV, we obtain $\tau_s \approx 3 \times 10^{-13}[1 - (T/T_c)]^{-1/2}$. The spin diffusion length ℓ_s may be estimated by $\ell_s \approx \sqrt{\tau_s v_F T}$, where ℓ_s is the electron mean free path, and v_F is the Fermi velocity $[1]$. For $v_F \approx 10^5$ m/s and $\ell_0 \approx 20$ nm, we find that $\ell_s \approx 25$ nm for $T \to 0$ and $\ell_s \approx 80$ nm (\approx sample thickness) at $[1 - (T/T_c)] \approx 0.01$. This estimate is consistent with the observed strong dependence of J_c on I_m in F-I-S only near T_c.

The main panel of Figure 2(a) illustrates the differential conductance (dI/dV) versus bias voltage (V) data of YBCO, taken with a low-temperature STM, for c-axis tunneling at 4.2 K and under various I_m. The inset shows the dependence of QP density of states (DOS) on I_m at the Fermi level $(V = 0)$. The spectra appear invariant for I_m up to 35 mA $[6]$, above which spectral smearing appears, showing excess QP-DOS near the zero bias, which is consistent with Cooper pair breaking. The threshold current $I_m^* \approx 35$ mA corresponds to an injection energy $(eI_m^* R_J) \approx 21$ meV, comparable to Δ_d for a measured junction resistance $R_J \approx 0.6\Omega$. At higher I_m, the QP-DOS may be fitted to an effective QP temperature $(T^* \approx 60$ K), even under negligible Joule heating $[6]$. In contrast, spec.

References

