Reconfigurable Sensor Fusion Processing Hardware

Adrian Stoica, Tyson Thomas, Wei-Te Li, David Weldon, Tuan Duong, and Taher Daud
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

ABSTRACT

The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor data in compact low power VLSI. The demonstration of the ELIPS concept targets the functionality of image processing for a fast frame seeker. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, as classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability would allow the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and tested to demonstrate microsecond-processing speeds.
1. INTRODUCTION

1.1 A general need for sensor fusion processors

With the advent of recent increasingly high-performance sensors and processing power, a plethora of novel applications are imagined using multiple sensors, many of various complementary nature. Novel architectures, algorithms and hardware are required to optimally address the sensor fusion challenges of high-bandwidth, often noisy, sometimes contradictory data. The problem of using more sensors with higher data rates is aggravated by the need for faster response time, which demands higher levels of computational power. The traditional approach is to build/use increasingly powerful general-purpose processors. Yet, classical algorithms for fusing data (originating in preponderant Bayesian approaches) face challenges in addressing the sensor-fusion problem and need complemented/overridden by novel approaches, such as the ones coming from the computational intelligence research.

Computational intelligence techniques, such as fuzzy logic and neural networks combined with the more traditional Artificial Intelligence paradigm of expert systems proved efficient in solving a category of problems for which an accurate mathematical formulation of models was either not feasible or practically impossible to compute in useful time. The most eloquent examples of such problems are in pattern recognition and decision-making applications. These techniques are essentially parallel, and thus it is natural to build dedicated processors efficient in such operations, and would function in stand-alone mode or as co-processors to provide high-speed computation on massive amounts of data with parallel processing. While these processors can be built either in digital or analog hardware, the massive amount of interconnection for parallel implementation and the power requirements encountered in certain space, military or commercial applications such as hand-held devices make the idea of an analog ASIC processor preferable. An example of such an application requiring low power fast processing of sensor data is associated with the discrimination performed onboard interceptors.

1.2 Discriminating Interceptor Technology Requirements

The Ballistic Missile Defense Organization (BMDO) is conducting the Discriminating Interceptor Technology Program (DITP) for the development of advanced and enabling fast frame seeker capabilities. The challenge for the technology is to combat more complex future threats facing the National and Theater Missile Defense (NMD/TMD).
The objective is to develop miniaturized interceptor components and subsystems to meet serious space, weight, and power constraints[1]. In this regard, part of a major effort is directed toward the development of new sensor data fusion processing technology that will particularly address high speed and on-board autonomy. This capability can achieve speedy target acquisition, thereby extending the time-to-engange and reducing the dependence on the external battle management and off-board surveillance assets[1].

Once the initially required off-board battle management intelligence is provided to the seeker the primary goal of the DITP is to exploit the multi-phenomenological sensor data obtained from on-board LADAR and infrared detector arrays for threat engagement via development and integration of real-time sensor fusion algorithms and processors. The overriding hypothesis is that sensor data fusion at three levels (i.e., signal, feature, and decision) is necessary to improve its capability and to accommodate a wide variety of missions and targets.

To meet the challenge of compact, low power, and high-speed on-board data processing, a novel intelligent sensor data fusion processing architecture, termed the Extended Logic Intelligent Processing System (ELIPS), has been developed. ELIPS integrates the analog hardware technology of neural networks, fuzzy logic, and expert rule processing with the conventional digital processing using a host computer. The individual modules are designed to be reconfigurable and cascadable. In addition, the overall architecture has been developed to be flexible enough for rerouting of signals to any required processing module by having an interconnecting network with switching arrays.

This paper briefly describes the ELIPS concept and architecture, focusing more on the hardware implementation of the individual ELIPS component modules. Experiments with test chips implementing ELIPS modules illustrate the performance of the analog ASIC implementation.

2. FUZZY, EXPERT, AND NEURAL COMPUTATION

Expert systems have been employed in a variety of sensor fusion applications; a recent example is detailed for guiding the user in defining the architecture for the sensor fusion system[2]. Fuzzy logic and neural networks are also becoming widely accepted in the sensor fusion community as techniques, which proved powerful in sensor fusion applications[3-4].
Conditional rule-based systems are using rules of the form "IF a is A AND b is B THEN y is Y" where a, b, and y are the input and output variables respectively, and A, B, Y are classes - in particular fuzzy classes/sets. Thus, a rule-base system can be seen as accepting input data from measurements or preprocessing and providing outputs as transformed by the rules. In particular the outputs could be associated with classes to which the inputs cluster and the magnitude of the outputs associated to the degree of membership to these classes. (Another possible interpretation is that the numbers represent the confidence in the classification, e.g. 70% confidence that the object is target 1, 20% that it is target 2, 10% confidence that it is a decoy.

New concepts from fuzzy sets theory have revitalized the use of rule-base system, which can thus better cope with the imprecision in matching antecedent clauses. The main operations of fuzzy reasoning are fuzzification, rule evaluations and defuzzification. Fuzzification transforms a crisp input to a degree of membership to a fuzzy set and certain rules are evaluated depending on which fuzzy sets are matched. For certain problems such as classification, this is the end of fuzzy reasoning - the output results are fuzzy sets and degrees to which they are matched. For example, the output result can be that input signals match the characteristics of target A to 0.8 extent, targets B in degree 0.4 and decoys in degree 0.3; sometimes this can be (improperly) expressed as probabilities, i.e., there is 80% chance/probability/confidence that object is target A, etc. If the desired output is a crisp one, for example an output control signal - the output sets and the associated degrees of memberships are transformed by a defuzzifier into a crisp value. Amongst the most popular methods for defuzzification is the center of gravity method, which requires mainly additions and multiplication.

Neural networks are parallel computation structures characterized by somatic operation between inputs and weights and somatic operations aggregating the weighted inputs and usually passing them through a nonlinear function. Different neural architectures were explored, with different ways of interconnecting the neurons in feed-forward only or in recurrent mode as well, and with a variety of learning rules.

Requirements for fast processing, compact or low power implementation lead to efforts for developing various hardware implementations. The nature of computations involved in fuzzy reasoning is essentially parallel (for
example, rule evaluations are independent of each other and can be calculated concurrently). A dedicated parallel hardware solution is, therefore, preferable to a software solution on a general-purpose processor and even to a RISC processor, with fuzzy-oriented instructions such as VY86C570 (70-microsecond inference speed)[5] or Motorola's 68HC12 (the 1st standard microcontroller family with a comprehensive fuzzy logic instruction set, and the 1st 16-bit engine for fuzzy logic)[6]. Ideally one would want to preserve high versatility of general-purpose processors, while reaching low-power high-speed operation. Analog offers the advantage of lower power consumption. While better precision can be obtained in digital implementations, very precise computations are not required for fuzzy processing; usually 8 bits are considered sufficient for most applications. (This relaxed restriction on precision is due to the fact that membership functions representing fuzzy classes are usually defined by humans, who can not, and do not, specify fuzzy set borders with high precision - usually with less than 8 bits). Specific implementations of fuzzy processors are described in the literature[7-11].

The same parallelism is true for neural processing, and ideally hardware implementations should be parallel for maximum efficiency. In the same way as for fuzzy expert systems, large number of interconnections and low power justify analog VLSI implementations of neural processors. A detailed justification of analog neural processors is presented in Ref. [12].

3. ELIPS CONCEPT AND ARCHITECTURE

The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way as classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to be reconfigured into different machines, taking the most efficient hardware implementation during each phase of information processing.

The ELIPS architecture is designed to accomplish, for the first time, a fully parallel implementation and seamless integration of three artificial/computational intelligence technologies: (1) membership-function-based fuzzy logic; (2) rule-based expert systems; and (3) massively parallel artificial neural network. In its initial demonstration, ELIPS
4.1. The fuzzy set module: FSP

The main function of a fuzzy set processor is signal transformation, which can be interpreted for example as:

- fuzzification - i.e. association between an input crisp signal and a degree of membership to a fuzzy set/class, or
- signal conditioning/ non-linear transformation, coordinate transformation.

The FSP was designed as a processing module with 16 inputs of 5 membership classes each. The architecture of the FSP is presented in Figure 2. The chip has 16 analog voltage inputs and 16x5 outputs, and allows digital programmability of the membership functions for each input variable. The membership functions have trapezoidal shape, with programmable parameters for the legs and slopes as illustrated in Figure 3. The position of the legs can be specified with 8-bit resolution and the slope with 5-bit resolution. The equations that describe the output of a trapezoidal membership function are:

If $X \leq A$, $Y = Low$

If $A < X < (CD + AB)/(B + C)$, $Y = MIN(BX - AB + Low, High)$

If $(CD + AB)/(B + C) < X < D$, $Y = MIN(-CX + CD + Low, High)$
If \(X > D \), \(Y = \text{Low} \),

where \(A \) is the location of the left leg, \(B \) is the unsigned slope of the left leg, \(C \) is the unsigned slope of the right leg, and \(D \) is the location of the right leg. The chip design currently uses \(\text{Low} = 1 \) volt and \(\text{High} = 4 \) volts with \(\text{Vdd} = 5 \) volts.

The schematic diagram in Figure 3 details the processing path of a single membership function circuit (MFC). While inputs and outputs are in voltage mode for external compatibility, the internal MFC implementation is in current-mode. The input voltage enters the first processing block, which is a Voltage to Current (V/I) converter. Currents proportional to the digital values of the legs, \(A \) and \(D \), are generated in Multiplying Digital to Analog Converters (MDACs). The current corresponding to the left leg gets subtracted from a copy of the input current, while a different copy of the input current gets subtracted from the right leg current. The resulting currents, which correspond to the left and right sides of the trapezoid, enter their appropriate Dividing Digital to Analog Converter (divDAC) where the signals are divided by 5-bit digital values to scale the slopes. The minimum of the two resulting values is then selected which chooses the side that is along the trapezoid. The top of the trapezoid is achieved by taking the minimum of the resulting current and the full-scale current, and this result is converted to the voltage output of the MFC. A test chip for 2 input variables with 5 membership functions calculating the degree of membership has been implemented and tested. A variety of membership functions generated by the chip is illustrated in Figure 4.

Signals obtained from the chip are also illustrated below in a discrimination task. The results are compared with the software implementation and show accurate reproduction in hardware of the results obtained by simulation. Figures 5 and 6 shows how the membership functions are used to separate the spaces containing targets and decoys. The software simulations are shown on the left and the programmed hardware output of the membership is shown on the right. The variables are transformations of some measured parameters characterizing target and decoy signals. The software results show that signals processed using these membership functions would result in discrimination of targets and decoys, as well as targets of different types based on available DIITP data. Figure 5 shows only discrimination between targets and decoys. Figure 6 shows further discrimination distinguishing individual targets. The hardware tests show that the fuzzification/discrimination of this type would take less than a microsecond.
4.2. The expert-rule module: MERP

The main function of a rule processor is to evaluate matches between input data and classes of knowledge (the satisfaction of certain conditions by the input) and prescribe the implications for such cases.

The general structure of processing in MERP is by inference on a collection of rules of the form:

Rule 1. If \(a_1\) is \(A_1\), AND \(a_2\) is \(A_1\), AND ... \(a_m\) is \(A_m\), THEN \(y\) is \(Y_1\)

...

Rule n. If \(a_1\) is \(A_{n1}\), AND \(a_2\) is \(A_{n2}\), AND ... \(a_m\) is \(A_{nm}\), THEN \(y\) is \(Y_n\)

where \(A_i\) are fuzzy sets or their complements, i.e. if \(A_{im}\) is a predetermined trapezoidal membership function of fuzzy set and \(A_{ik}\) is its complement then \(A_{ik} = \text{NOT}(A_{im})\). Consider the degree of membership/matching a fuzzy set/class being calculated by the FSP, and thus "a is A" being replaced with \(u\), which is the degree to which "a is A". The complement is commonly calculated either as the difference to unity, i.e. \(\text{NOT}(u) = 1-u\), or as the maximum of all other classes except the one to be complemented, i.e. if classes covering input space are \(u_1, u_2, u_3, u_4\) then the complement is \(\text{NOT}(u_3) = \text{MAX}(u_1, u_2, u_4)\). We built test circuitry to calculate the complement in both ways but only the second version was so far integrated within a rule-system chip. The conjunction AND is treated as the MIN operator. Thus, the antecedent "\(a_1\) is \(A_{n1}\), AND \(a_2\) is \(A_{n2}\), AND ... \(a_m\) is \(A_{nm}\)" can be read after fuzzification as \((u_{n1} \text{ AND } u_{n2} \text{ AND } ... u_{nm})\) and calculated as \(u_m = \text{MIN}(u_{n1}, u_{n2}, ..., u_{nm})\). The collection of rules in the rules base can be read as Rule 1, OR Rule 2, OR...Rule n; several rules may refer to the same conclusion/class. The logical connective OR is calculated as MAX, thus the degree of supporting an output class is the maximum of all the degrees of supporting that class coming from different rules in the rule-base.

The processing stages calculating complement, conjunction and disjunction are reflected directly in the MERP architecture presented schematically in Figure 7. Stage 1 calculates the complement by MAX operation; Stage 2 calculates the conjunction within the same rule by MIN operator; Stage 3 calculates the disjunction of all rules that refer to the same conclusion by MAX operator. The controls specify which components are selected for MIN and MAX in different rules.
Figure 8 goes into a more detailed implementation design of the MERP module. The MERP module is designed as a processing module with 16 inputs with 5 membership classes each; a complement is calculated for each membership class inside the module. The module supports rules with up to 64 conjunctions; up to 128 rules can be programmed in the module and 32 decisions can be obtained as outputs. The implementation of the MERP module is performed in four development phases allowing testing of various circuits (such as analog MIN and MAX circuits) and system/integration solutions before a full-scale more expensive chip is attempted. Figure 9 shows test results from a fabricated MIN circuit (the upper waveforms are the input and the lower one is the output, which is the minimum of the two).

In the second, a smaller version of MERP (called miniMERP) with 2 inputs and 4 rules was fabricated on a test chip. The block diagram for the chip is illustrated in Figure 10; the chip was fabricated and tested successfully. The propagation time of a signal from inputs to output was around two microseconds. Phase 3 of development consists in integrating 8 analog inputs, 40 membership functions and 9 rules circuits on the same Fuzzy Expert System (FES) chip. The membership functions are digitally programmable trapezoids. The rules are digitally programmed to select from various membership functions for each input variable, including membership function complements. Each rule performs a conjunction amongst selected membership functions and their complements (one per variable). All analog circuitry is current-mode and the rule output currents are available in parallel on nine separate lines. The chip was fabricated and is currently under test.

4.3. The neural modules: PFN and PRN

Neural network modules are implemented around a neural chip architecture developed at JPL [12, 14]. The chip, code named NN64, and schematically illustrated in Figure 11 consists of a 64 x 64 array of 8-bit synapses with 8-bit local static memory, 64 neurons, and registers for data and control. The chip is designed to implement a feed-forward or a recurrent neural network with various network topologies with up to 64 neurons.

4.3.1. Functional description of analog processing in NN64: The 64 analog voltage inputs first get converted to currents by a row of V-I converters at the top of the 64 x 64 synaptic array. Each V-I circuit actually produces two
4.3.2. Digital programming of NN64: The synapses are loaded single row at a time. The data for a given row is clocked into a 64 long 8-bit wide shift register, one byte at a time. After 64 clock cycles, the data for an entire row of synapses is ready to be loaded into the local memory of each MDAC. A 6-bit row address is supplied and an active-low load signal is asserted, which dumps the data into the synapses on the row specified. Alternatively, a synchronous loading scheme may be used. This method employs a single bit shift register to act as a token ring and specify consecutive rows for loading. When reset is asserted, the top of the token ring corresponding to row 1 is set while the rest of the shift register is reset. As data is clocked in, a 6-bit counter keeps track of how many bytes have been loaded. When the carry-out of the counter indicates that the data has been entirely loaded, a load signal is automatically generated that activates the row on its rising edge and passes the token to the next row on its falling edge. In this way the entire array of synapses can be loaded from the top row down by simply clocking in 4096 bytes of data. Neurons are also programmed with a single bit shift register. If a control signal is asserted, all neurons are automatically bypassed since the entire register is reset. Otherwise, a single bit is clocked by a special clock 64 times. The register loads from the bottom up so that the first data loaded corresponds to the first row neuron. More
4.4.1. Hybrid Neuro Fuzzy Expert System (NFES): A new test chip, termed ELIPS3, contains the second generation Membership Function Circuit (MFC) which is a voltage input/output circuit that uses current-mode processing and is digitally programmable with a generic trapezoidal shape membership function. ELIPS3 contains ten MFCs, five of which are associated with each of the two input variables. Another test chip, termed FES1, contains a similar circuit for the membership function processing but the I/V output conversion is eliminated and the current is directly passed to the rule circuits, which are part of the MERP. Current-mode rule circuits process the membership function information on the same chip before creating as output the conclusions of nine different digitally programmed rules. The rules are conjunctive (AND) and complemented or non-complemented membership function values may be used for processing. FES1 contains forty membership function circuits with five associated with each of eight input variables. Each of the nine rules may be configured to process any combination of complemented or non-complemented membership values from any of the eight input variables.

4.4.2. FANN Board: The Fuzzy-Artificial Neural Networks (FANN) test-board was designed to test the FES1 fuzzy-expert chip as well as to allow configurations of neural and fuzzy systems that combine two NN64 chips and four FES1 chips. Figure 13 is a photograph of the FANN test-board. The board also includes four analog multifunction converters capable of performing defuzzification processing and enabling a fuzzy system entirely in hardware. The different system architecture configurations are achieved by setting the appropriate jumper blocks, while the membership function shapes, rules, and neural network weights can be programmed through the computer interface. LabVIEW Full Development System 5.1 software is used to program the FANN via National Instruments
ATMIO64E-3, PCI-DIO-96, and AT-AO-10 interface boards, which provide the required analog and digital I/O. The LabVIEW Fuzzy Toolbox is used to provide a high-level user interface for programming the FES1 chips, allowing the user to specify a high-level fuzzy system that then gets translated and downloaded to the fuzzy hardware on the FANN board.

The board allows 4 FES chips to be mounted on it, such that up to 36 rules can be programmed. In addition, the board incorporates the design for testing of the neural network chips, with 2 NN64 chips and a group of 16 quad-A/D chips. The board aims to play multiple roles, allowing:

- the test of the FES and NN64 chips individually,
- the test of the chips in tandem configuration, e.g. FES followed by NN64, etc.
- the test of the fusion algorithm in hardware, using the neural chips.

Ultimately, the ELIPS modules could be integrated to provide an intelligent processor as a multi-chip module. A sketch visualization of the final integrated product is illustrated in Figure 14.

5. CONCLUSIONS

Current technology allows the realization of a sensor fusion processor on a chip. A trade-off is to be made between the performance and cost of such a processor. Computational intelligence elements such as fuzzy reasoning and neural networks technology are considered fundamental for a sensor fusion chip. Several test chips implementing components of the ELIPS sensor fusion architecture have been fabricated in analog VLSI hardware and demonstrated processing times of the order of microsecond for a variety of tasks, such as target classification from preprocessed data.

6. ACKNOWLEDGMENT

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the Ballistic Missile Defense Organization through an agreement with the National Aeronautics and Space Administration. We thank Drs. C. Padgett, and A. Thakoor for helpful discussions and suggestions.
7. REFERENCES

Figure 1. ELIPS architecture and main computational modules

Figure 2. FSP architecture

Figure 3. Block diagram of HW implementation for a simple MFC

Figure 4. A variety of membership function shapes generated on the MFC test chip
Figure 5. Software (left) and hardware (right) generated membership functions in a discrimination task: target vs. decoy

\[A_r + (O_r - 1.8)^2 \]

Figure 6. Software (left) and hardware (right) generated membership functions in a discrimination task: target 1 vs. target 2

\[O_l + (O_r - 2.02)^2 \]

Figure 7. Schematic of MERP architecture
Figure 8. A more detailed design of MERP architecture

Figure 9. Speed test on a MERP MIN circuit

Figure 10. Block diagram of an analog mini-MERP test chip

Figure 11. Diagram of a neuron-synapse composite chip configured as a feed-forward neural network.
Figure 12. Photo of the NN64 on test board, experimental set-up, and robot visually tracking a path under NN64 control.

Figure 13. Photograph of the FANN test-board.

Figure 14. Visualization of a sensor fusion processor as a multi-chip module.