A 119Sn Mössbauer Spectrometry Study of Li-SnO Anode Materials for Li-Ion Cells

A. Hightowera, P. Delcroixb, G. Le Caërb, C-K. Huangc, B. V. Ratnakumarc, C. C. Ahna and B. Fultza

da Division of Engineering and Applied Science, mail 138-78
California Institute of Technology
Pasadena, CA 91125, USA

d Laboratoire de Science et Génie des Matériaux Métalliques,
C.N.R.S. U.M.R. 7584, Ecole des Mines,
F-54042 Nancy Cedex, France

c Electrochemical Technologies Group, Bldg. 277
Jet Propulsion Laboratory
Pasadena, CA 91109, USA

4/28/99
Abstract

Anode materials of SnO were charged reversibly with Li to capacities greater than 600 mAh/g. The materials were characterized by ^{119}Sn Mössbauer spectrometry at 11 K and 300 K, and by x-ray diffractometry at 300 K. Trends in the valence of Sn were as expected when the Sn oxides are reduced in the presence of Li. At low Li capacities the SnO is reduced to small particles of β-Sn, and with increasing Li capacity an alloy of Li$_{22}$Sn$_5$ is formed in the material. Although the Li$_{22}$Sn$_5$ develops over a range of Li concentrations in the anode material, the Li$_{22}$Sn$_5$ that forms at low Li insertions is not typical of bulk Li$_{22}$Sn$_5$ either structurally or electrochemically. The recoil-free fraction of the Sn oxide was suppressed substantially in the anode materials, indicating a defective oxide structure in the anode material. We monitored the changes in the Li-SnO and Li-Sn materials during atmospheric exposure over times up to 2 months. This oxidation process of Sn was very much the reverse of the Sn reduction during the Li insertion, although it occurred over a much longer time scale. We also report the temperature dependencies of recoil-free fractions in β-Sn, SnO$_2$, and the alloy Li$_{22}$Sn$_5$.

-2-
Introduction

A high specific energy has generated widespread scientific and technical interest in Li-ion cells for secondary batteries. This high specific energy density is derived from the high cell voltage, typically 4 V (versus 1.3 V for a typical Ni-MH secondary battery). The Li densities in the cathode and anode materials are modest, however, and it is hoped that higher capacities of these electrodes will lead to further increases in the specific energies of Li-ion cells. Anode and cathode materials are now subjects of numerous investigations [1-3]. Huggins performed some early work on alloy anodes [4,5]. Recently, Ioda, et al., of Fujifilm Celltec Co., Ltd., announced a new class of anode material comprising a composite Sn oxide glass [6,7]. These Sn oxide glasses have a reversible capacity of approximately twice that of carbon materials, but unfortunately exhibit a large irreversible capacity and problems with capacity fade after tens of charge-discharge cycles.

Early evidence was that the Li inserted in the Sn oxide glass material was ionic [7], but Courtney, McKinnon and Dahn have provided convincing evidence for the formation of metallic Sn and Sn-Li alloys during Li insertion [8-10]. The general picture is that Li will reduce the Sn oxides to metallic Sn. Further studies on the mechanism of Li insertion in tin oxides and alloys have been performed by Mao, et al. [11,12] with 119Sn Mössbauer spectrometry measurements using a sealed cell. With increasing Li concentration in the anode material, a series of Li-Sn phases were observed by x-ray diffractometry [13], including Li$_{22}$Sn$_5$, which represents an increase in volume over that of pure β-Sn by a factor of 3.6. Courtney and Dahn argued that since the increase in specific volume induces large local stresses, the cycle life of the electrode is poor when the Sn-rich regions in the electrode are large [8-13]. The role of microstructure on cycle life of Sn oxide anodes remains poorly understood, however.

Although the Fujifilm Celltec material has not yet been used for products in the marketplace, its promise has prompted a number of investigations into other Sn and Sn oxide
materials that can be used as anodes in Li-ion cells [9-18]. One of the present authors has studied the insertion of Li into SnO [14], showing again that the Li served to reduce the Sn, and a Li-Sn alloy was formed at higher Li concentrations. Here we report results of ^{119}Sn Mössbauer spectrometry measurements at 11 K and 300 K on partially- and fully-charged Li-SnO anode materials. We present detailed measurements of the recoil-free fractions (r.f.f.) of the anode materials, and we show that the r.f.f. of the Sn oxide in the anode is anomalous, indicative of atomic-scale heterogeneities in the distribution of Sn atoms. We also present results from a study on the deterioration of Li-charged anode materials and Li-Sn alloys during long-term atmospheric exposure. During atmospheric exposure, the selective oxidation of Li causes β-Sn to separate quickly from the Li-Sn alloy, and the β-Sn then oxidizes over longer times. The hyperfine parameters of the Mössbauer spectra indicate that in the early stages of oxidation, the Sn is in small or defective oxides with Sn$^{4+}$, but a little Sn$^{2+}$ was observed at later times.

Experimental

Electrode and Sample Preparation. — Commercial SnO powder was purchased from Cerac Chemical. The SnO electrodes were fabricated on copper foil substrates using 6 wt.% PVDF binder with 10% carbon black as a conductive diluent. These electrodes were used in half cells with Li metal as the anode and an electrolyte of 1M LiPF$_6$ dissolved in 30 % EC and 70% DMC. Selected amounts of Li, varying from 0 to 6.4 mole per mole of SnO, were titrated into SnO or extracted from Li$_x$SnO using galvanostatic measurements at a current density of 0.020 mA cm$^{-2}$. Here we define “x” in Li$_x$SnO as the molar ratio of Li to the initial SnO. Figure 1 shows the initial charge and discharge curves, with labels indicating the state of the samples used for Mössbauer spectrometry measurements. In what follows, these samples will be designated Li$_{2.3}$SnO and Li$_{5}$SnO. Similar electrodes and cells were used in measurements of cycle life using an automatic battery cycler made by Arbin Corp., College Station, TX. Cycle life measurements were performed on sealed full cells with LiCoO$_2$ cathodes. The voltage range was controlled to be between 3.0 and 4.1 V with a charging
current density of 0.2 mA/cm² and a discharging current density of 0.4 mA/cm². Cycle life measurements were also performed on a half cell using a Li counter electrode. The cycle life measurements with half cells used the same current densities for charging and discharging, but a voltage range between 0 and 1 V.

To characterize the Li-SnO electrode materials by x-ray diffractometry, transmission electron microscopy, and Mössbauer spectrometry, after 5 cycles the electrodes were removed from the half-cell and washed in DMC. The electrodes were vacuum dried and the powders were scraped. All operations were performed in a glove box with a pure and dry argon atmosphere. Samples for X-ray diffractometry were sealed in pyrex capillary tubes under Ar atmosphere. TEM samples were prepared by crushing anode material with a mortar and pestle under Fluorinert FC-43 by 3M. Copper backed, amorphous carbon grids were then dipped into the anode/fluorinert suspension and inserted into the microscope. For Mössbauer spectrometry, the anode powder was mixed with a small amount of dehydrated boron nitride powders to ensure an overall thickness homogeneity. The samples were pressed into pellets that were encapsulated in altuglass sample holders and sealed with an altuglass glue. The samples comprised typically 50 mg of anode material. To study oxidation behavior, powdered samples were also stored in ambient laboratory air. Although the x-ray diffractometry and Mössbauer spectrometry samples were exposed to ambient conditions on different continents, equivalent atmospherics were sought by inoculating the Pasadena air with vapors from a bottle of Chateau le Barradis 1996.

Mössbauer Spectrometry. — ¹¹⁹Sn Mössbauer spectra were obtained at room temperature (denoted “RT”, nominally 300 K) and at 11 K in transmission geometry with a spectrometer operated in the conventional constant acceleration mode. A Ba¹¹⁹SnO₃ with a strength of ∼ 10 mCi was used. Typical acquisition times were 12 h or 24 h. All ¹¹⁹Sn isomer shifts are referenced to BaSnO₃ at RT. The velocity scale was calibrated with a metallic bcc iron sample and source of ⁵⁷Co in Rh. Spectra of commercially available powders of SnO₂, BaSnO₃, and a 12 μm foil of metallic β-Sn were also measured for use as calibration standards.
Spectra of mixtures of known amounts of commercial powders of SnO₂, Li₂₂Sn₅, and β-Sn were also measured at 300 K and 11 K. All spectra were recorded with adequate counting statistics to permit a deconvolution of the natural linewidth from the spectrum. This deconvolution was useful for revealing the presence of different chemical environments of Sn atoms. The deconvolution utilized a conventional constrained Hesse-Rübatsch method [19]. The use of a model-independent histogram method for such an experimental purpose is new to the best of our knowledge. Since a simple Lorentzian lineshape is deconvoluted from the experimental spectra, in practice the deconvolution procedure is much the same as using the constrained Hesse-Rübatsch method for determining an isomer shift distribution. The calculation of hyperfine parameter distributions from spectra has been the subject of a number of studies and recent reviews [19-22]. Mathematically, this class of "inverse problems" is ill-posed. Small changes in spectra may lead to large changes in the resulting distributions. Regularization methods are therefore required when working with real experimental data, and regularization impairs the deconvolution procedure.

Nevertheless, the deconvolution provides a significant and welcome improvement in resolution. For Sn spectra, the FWHM of the deconvoluted Lorentz line was chosen here as a typical minimum FWHM of a single Sn spectral line, that is Γ=0.82 mm/s. As another consequence of the regularization procedure, small oscillations appear above the flat zero background of the deconvoluted spectra. These oscillations are artifacts of the deconvolution procedure — although the smoothing parameter must be small to avoid distorting excessively the main contributions, it must be large enough to avoid the oscillations that are driven by counting statistics. All spectra were calculated with the same fitting conditions. The deconvoluted spectra are normalized to unity.

Regularization conditions are set by the smoothing parameter of the constrained Hesse-Rübatsch method [19]. For example, when a Lorentzian line with a full-width-at-half-maximum (FWHM) Γ_L = 0.22 mm/s is removed from a calibration spectrum of metallic bcc iron (with a good signal-to-noise ratio) whose inner lines have a FWHM Γ_M = 0.24 mm/s, a line well approximated by a Gaussian line of FWHM Γ_G = 0.13 mm/s remains. This is much wider than the Lorentzian function of FWHM = 0.02 mm/s that is predicted. Such oscillations can have only a weak effect on the integral results presented in Tables 1 and 2, however.
Electrochemical Results

Figure 1 shows the cell voltage versus Li capacity for the first coulometric titration of the SnO electrode. The large irreversible capacity of about one-third the initial capacity (1240 mAh/g) was typical of cells of Sn oxide anode materials [12-18]. This irreversible capacity for the first cycle is probably caused by several factors including the consumption of Li atoms during the reduction of the SnO, the reduction of the electrolyte with the formation of a solid-electrolyte interphase, and perhaps the formation of kinetically-inaccessible Li. With x>6.2, the cell voltage of 0 V indicates that there is an electroplating of Li on the electrode.

Cycle life results are presented in Fig. 2. The impressively high initial capacity declines markedly after several cycles, but the deterioration slows considerably after 5 cycles. After about 30 cycles the capacity was over 300 mAh/g in both the half cell and full cell cycling tests. These results are typical of results reported on other Sn oxide anodes [10-18].

X-Ray Diffractometry and TEM Results

X-ray diffractometry was performed with Mo Kα radiation (λ = 0.07107 nm) using an Inel CPS120 powder diffractometer with a position sensitive detector. The electrodes were composed initially of powdered SnO. Nevertheless, upon the first electrochemical titration of Li to x=5 in LiₓSnO, x-ray diffractometry showed a distinct diffraction pattern from Li₂₂Sn₅ alone (see Fig. 3). The electrode material charged to x=2.3 showed a mixture of β-Sn and Li₂₂Sn₅, but no SnO. Evidently the SnO is quickly reduced during Li insertion. When more Li is inserted, the β-Sn forms an alloy with Li metal. X-ray diffractometry shows this alloy to be Li₂₂Sn₅ both for low and high Li insertions, but the diffraction peaks from Li₂₂Sn₅ are broader for the electrode material charged to x=2.3. Figure 3 also shows a significant broadening of the x-ray peaks from the β-Sn in the anode material, indicative of crystallite sizes of 10 nm or so. There was no evidence for oxides of either Sn or Li in any x-ray diffraction patterns. From the
large amounts of Sn$^{4+}$ observed by Mössbauer spectrometry, we would expect a significant amount of diffraction from Sn oxides. The absence of diffraction peaks from Sn oxide indicates that it is probably amorphous, and its broad diffraction pattern was lost when stripping the diffraction pattern of the glass capillary from the measured data. Although we would expect only weak x-ray scattering from Li oxides, perhaps near the limit of detectability, we also suspect that the Li oxides may be amorphous or present as small particles with broadened diffraction peaks.

Transmission electron microscopy was performed with a Philips EM430 transmission electron microscopy operated at 200 keV. A bright field transmission electron micrograph of the Li$_5$SnO material is presented in Fig. 4. The electron beam damage to the specimen proved to be quick, substantial, and recognizable as a change in the shapes of the regions being examined. The image in Fig. 4 was acquired within a few seconds after the region was moved into the electron beam. The diffraction pattern shows primarily β-Sn, although some diffraction spots from Li$_{22}$Sn$_5$ were visible in other diffraction patterns. On the other hand, this material was found to be primarily Li$_{22}$Sn$_5$ by x-ray diffractometry. The conversion to β-Sn suggests substantial oxidation of the thin TEM sample, as discussed below. The TEM image of Fig. 4 shows many small regions that appear dark, likely because they are β-Sn particles that are diffracting or more absorbing. These regions range in size from a few nm to tens of nm. The lighter regions are probably Li oxides, and were unstable under the electron beam.

Mössbauer Spectrometry Results

Mössbauer Spectra of Control Samples. — At the top of Fig. 5 are transmission Mössbauer spectra from β-Sn, SnO$_2$, and Li$_{22}$Sn$_5$. Deconvoluted spectra with higher resolution are shown at the bottom of Fig. 5. In general, the more oxidized the Sn, the larger the shift to negative velocities. The SnO$_2$ spectrum comprises a doublet of equal intensity lines with IS=0 ± 0.03 mm/s and a quadrupole splitting QS=0.58 ± 0.04 mm/s. This is in good agreement with published values: (QS=0.50 mm/s [23], QS=0.61 mm/s [24], QS= 0.55 or
0.56 mm/s [25], QS= 0.56 mm/s [26], QS= 0.54 mm/s [27]). The β-Sn spectrum at RT consists of a slightly-broadened single line (Γ=0.95 mm/s) with an isomer shift of 2.52±0.03 mm/s at RT. It agrees with published values (IS= 2.56 ±0.02 mm/s [24], 2.542±0.005 mm/s [28]). It is important to note that the β-Sn isomer shift falls within the typical range (2.5-2.7 mm/s) of isomer shifts of Sn²⁺ in SnO or in SnOₓ (x<2) (the precise values depend on x and on the actual oxide structures). The β-Sn can be distinguished, however, because the oxide spectra exhibit quadrupole splittings larger than 1 mm/s, and often close to 2 mm/s [23-30]. The isomer shift increases by about 0.04 mm/s when β-Sn is cooled to 77K [31]. Theoretical calculations [32] shows that the isomer shift of β-Sn falls between the isomer shift of covalent α-Sn, 2.021 ± 0.012 mm/s at RT [28], and that of a hypothetical metallic fcc Sn structure. A quadrupole splitting QS=0.41±0.04 mm/s is measured for β-Sn from the deconvoluted 11 K spectrum. Our data are in good agreement with results from recent theoretical calculations [33] of QS=0.37 mm/s for β-Sn and QS=0.47 mm/s for SnO₂.

Three spectra were measured from the control sample of Li₂₂Sn₅: one at RT, one at 11 K, and one again at RT after recording the low-temperature spectrum. The spectrum of Li₂₂Sn₅ is mainly a single broadened line. After deconvolution, a main line with a maximum at 1.93 ± 0.03 mm/s is observed. This line is asymmetric and a high intensity shoulder at about 1.75 mm/s is also observed. A line with a relative area of 0.12 is also observed at 2.56 ± 0.03 mm/s. Figure 5 also shows a much smaller broad line at about 1.05 mm/s which may not be experimentally significant, and very small oscillations that are artifacts of the deconvolution procedure. The crystallographic structure of Li₂₂Sn₅ is of the Li₂₂Pb₅ type (fcc, a=1.978 nm, with 16 formula units). This structure contains 432 atoms per unit cell and 80 Sn atoms in four different Sn sites with respective proportions 0.2, 0.2, 0.3, 0.3. In principle, these four chemical environments contribute up to eight independent lines to the observed spectrum, but the resolution even of the deconvoluted spectra is inadequate to identify the eight independent peaks. We can say only that the broadening of the Li₂₂Sn₅ spectrum probably originates with the different crystallographic sites for Sn atoms in the Li₂₂Sn₅ structure. At 11 K, the spectrum is broadened significantly and rather symmetrically around 2.13 mm/s. This suggests an
increase of the quadrupole splittings of the Sn sites when temperature is decreased. The isomer shift of approximately 2.0 mm/s for Li$_{22}$Sn$_5$ is consistent with α-Sn. We suggest, however, that the more negative isomer shift than that of β-Sn may have a chemical origin involving charge transfer between the Sn atoms and their Li neighbors.

The 300 K spectrum of Li$_{22}$Sn$_5$ measured subsequent to the 11 K spectrum is similar to the previous 300 K spectrum, but shows some differences. The main line is still at 1.95 ± 0.03 mm/s, but the shoulder at 1.75 mm/s is relatively more intense than previously. The relative area of the line at 2.56 mm/s has increased to 0.19, and a smaller line is seen at 1.25 mm/s. We show that these changes are consistent with an oxidation of the sample.

From these results on the control samples, we present a convenient summary of the velocity ranges in 119Sn spectra:

-1.0 to 1.0 mm/s corresponds to Sn$^{4+}$
1.0 to 2.3 mm/s corresponds to Sn in a Sn-Li alloy
2.2 to 3.2 mm/s corresponds to β-Sn

Spectral areas were integrated over these three velocity ranges to prepare Tables I and II for the different anode materials. These areas, normalized by the recoil-free-fractions, could be used to determine the fraction of Sn atoms in these three different chemical states.

Mössbauer Spectra of Anode Materials. — Although the anode was prepared from SnO, Mössbauer spectrometry shows that the anode material of Li$_{2.3}$SnO is a mixture of β-Sn plus a Li-Sn alloy, evidently Li$_{22}$Sn$_5$ from the x-ray diffractometry results. The fully-lithiated anode material, Li$_5$SnO, is primarily Li$_{22}$Sn$_5$ from x-ray diffractometry, and its Mössbauer spectrum is quite close to that of the standard sample of Li$_{22}$Sn$_5$. A Li stoichiometry of 1.0 is sufficient to reduce all SnO to metallic form. It is therefore not surprising that no SnO is present in the materials, especially since the samples had been subject to five charge/discharge cycles. Evidently the β-Sn forms with lower Li stoichiometry, perhaps less than Li$_{2.3}$SnO, and the
Li$_{22}$Sn$_5$ forms at higher Li concentrations, accounting for all the Sn in the sample of Li$_5$SnO. This is approximately consistent with trends reported for other Sn oxide anode materials [8-14]. Owing to the low recoil-free-fraction of β-Sn at RT, the fractions of spectral components in the spectrum acquired at 11 K are more representative of the actual phase fractions.

X-ray diffractometry (Fig. 3) shows that the Li$_{22}$Sn$_5$ intermetallic compound forms over a broad range of Li insertions, at least from Li$_{2.3}$SnO to Li$_5$SnO. It seems that there are some differences in this compound for low and high Li insertions, however. The coulometric titration of Fig. 1 shows a change of voltage from 0.7 to 0.25 V between $x=2.3$ and $x=5.0$, although a short plateau is observed at 380 mV near $x=4$, and can be associated with Li$_{22}$Sn$_5$ [34]. The Mössbauer spectrum from the Li$_{22}$Sn$_5$ in the anode material of composition Li$_{2.3}$SnO seems to be shifted towards more negative velocities than that of the material of composition of Li$_5$SnO (Fig. 5). Finally, the x-ray diffraction peaks from the anode material of composition Li$_{2.3}$SnO are broader than those from Li$_5$SnO (Fig. 3). We suggest that the Li$_{22}$Sn$_5$ that forms initially is more defective crystallographically than the Li$_{22}$Sn$_5$ that forms after more Li insertion. The chemical potential for Li in this more defective material is evidently lower than that of the more perfect Li$_{22}$Sn$_5$. Perhaps the crystallographic defects originate with a sub-stoichiometry of Li, such as Li vacancies.

The change in the fractional contributions from the Li$_{22}$Sn$_5$ and the β-Sn after the sample of Li$_5$SnO was cooled to 11 K is probably not significant, since there is strong overlap of these parts of the Mössbauer spectra. The sample of Li$_{2.3}$SnO increased considerably its fraction of Sn$^{4+}$ after cryogenic exposure, losing its alloy component and increasing the fraction of β-Sn. This is consistent with oxidation of the sample, since one of the windows on the sample package was not reliable upon cryogenic exposure. A detailed study of the oxidation behavior of these materials is presented below.

Recoil-Free Fractions: Standards. — The recoil-free fraction (the efficiency of the Mössbauer effect for a 119Sn nucleus in a given material at a specific temperature) is difficult to
measure on an absolute basis. It is much easier to measure ratios of recoil-free fractions, which
can be ratios of areas of spectral components of different phases, or ratios of areas of the same
spectral component at different temperatures. For anode materials, we prefer the method of
comparing the spectral areas of the same phase, since the phase fractions in a particular sample
remain constant at different temperatures. Before using this method with anode materials,
however, we first prepared four "standard" samples with known amounts of SnO₂ and β-Sn
powders. Standard No. 1 had an approximately equal amount of Sn in the two phases (24 mg
SnO₂ plus 20 mg β-Sn). Standard No. 2 had more β-Sn (8 mg SnO₂ plus 47 mg β-Sn), which
ensured more comparable spectral areas at higher temperatures. The other two standards were
mixtures of known amounts of Li₂₂Sn₅ with either β-Sn or SnO₂. Standard 3 was (26.52 mg
Li₂₂Sn₅ plus 13.42 mg SnO₂) and Standard 4 was (15.44 mg Li₂₂Sn₅ plus 24.56 mg β-Sn).

The measured spectral intensities of the SnO₂, β-Sn, and Li₂₂Sn₅ at temperature, T, are the
product of the recoil-free-fractions, f(T), and the atomic fractions, x(T):

\[I_{\text{SnO}_2}(T) = x_{\text{SnO}_2} f_{\text{SnO}_2}(T) \] \hspace{1cm} (1)

\[I_{\text{β-Sn}}(T) = x_{\text{β-Sn}} f_{\text{β-Sn}}(T) \] \hspace{1cm} (2)

\[I_{\text{Li}_{22}\text{Sn}_5}(T) = x_{\text{Li}_{22}\text{Sn}_5} f_{\text{Li}_{22}\text{Sn}_5}(T) \] \hspace{1cm} (3)

For comparison to literature results on β-Sn and SnO₂, we define the ratio, R(T), as:

\[R_{\text{SnO}_2/\text{Sn}}(T) \equiv \frac{f_{\text{SnO}_2}(T)}{f_{\text{β-Sn}}(T)} \frac{x_{\text{β-Sn}} I_{\text{SnO}_2}(T)}{x_{\text{SnO}_2} I_{\text{β-Sn}}(T)} \] \hspace{1cm} (4)

We obtained \(R_{\text{SnO}_2/\text{Sn}}(11K) = 1.74 \pm 0.30 \) and \(R_{\text{SnO}_2/\text{Sn}}(11K) = 1.40 \pm 0.30 \) for Standards
Nos. 1 and 2, respectively. With values in the literature of \(f_{\text{SnO}_2}(11K) = 0.89 \) at 11K [35], and
\(f_{\text{β-Sn}}(10K) = 0.715 \pm 0.01 \) [36], we expect \(R_{\text{SnO}_2/\text{Sn}}(11K) = 1.24 \), in reasonable agreement
with our results. At room temperature we find \(R_{\text{SnO}_2/\text{Sn}}(300K) = 8.4 \pm 0.8 \). At room
temperature, the Lamb-Mössbauer factors are reported to be: \(f_{\text{SnO}_2}(300K) = 0.56 \) [27],
\[f_{\text{SnO}_2}(300\text{K}) = 0.473 \] [29], and \[f_{\beta-\text{Sn}}(300\text{K}) = 0.04\pm 0.01 \] [36], \[f(300\text{K}) = 0.060\pm 0.002 \] [37], although for 25 nm nanoparticles of Sn \[f_{\beta-\text{Sn}}(300\text{K}) = 0.022\pm 0.001 \] [37]. These previously-published values give a range of \[R_{\text{SnO}_2/\text{Sn}}(300\text{K}) \] from 8 to 14, again in reasonable agreement with our results.

The standard samples composed of \(\text{Li}_{22}\text{Sn}_5 \) plus \(\beta\text{-Sn} \), and \(\text{Li}_{22}\text{Sn}_5 \) plus \(\text{SnO}_2 \), were measured at RT, at 11 K, and again at RT. It was found that the sample was unstable over periods of weeks, forming some \(\beta\text{-Sn} \) when the Li reacted with the O. Nevertheless, from the spectra measured promptly at RT, we found:

\[
R_{\text{Sn/LiSn}}(\text{RT}) = \frac{f_{\beta\text{Sn}}(\text{RT})}{f_{\text{Li}_{22}\text{Sn}_5}(\text{RT})} = \frac{x_{\text{Li}_{22}\text{Sn}_5} I_{\beta\text{Sn}}(\text{RT})}{x_{\beta\text{Sn}} I_{\text{Li}_{22}\text{Sn}_5}(\text{RT})} = 0.20 \pm 0.05 \tag{5}
\]

\[
R_{\text{LiSn/SnO}_2}(\text{RT}) = \frac{f_{\text{Li}_{22}\text{Sn}_5}(\text{RT})}{f_{\text{SnO}_2}(\text{RT})} = \frac{x_{\text{SnO}_2} I_{\text{Li}_{22}\text{Sn}_5}(\text{RT})}{x_{\text{Li}_{22}\text{Sn}_5} I_{\text{SnO}_2}(\text{RT})} = 0.60 \pm 0.10 \tag{6}
\]

Evidently the alloy \(\text{Li}_{22}\text{Sn}_5 \) has a larger effective Debye temperature than \(\beta\text{-Sn} \), being only somewhat smaller than \(\text{SnO}_2 \). The sample of \(\text{Li}_{22}\text{Sn}_5 \) plus \(\beta\text{-Sn} \), which was more stable against Li oxidation, showed as expected at 11 K that the r.f.f.'s of \(\text{Li}_{22}\text{Sn}_5 \) and \(\beta\text{-Sn} \) were similar:

\[
R_{\text{Sn/LiSn}}(11\text{K}) = \frac{f_{\beta\text{Sn}}(11\text{K})}{f_{\text{Li}_{22}\text{Sn}_5}(11\text{K})} = \frac{x_{\text{Li}_{22}\text{Sn}_5} I_{\beta\text{Sn}}(11\text{K})}{x_{\beta\text{Sn}} I_{\text{Li}_{22}\text{Sn}_5}(11\text{K})} = 1.0 \pm 0.2 \tag{7}
\]

We made an effort to obtain these Debye temperatures from our standards, which are: 277 K for \(\text{SnO}_2 \), 212 K for \(\text{Li}_{22}\text{Sn}_5 \), and 134 K for \(\beta\text{-Sn} \). Errors may be about \(\pm 20 \text{ K} \).

Recoil-Free Fractions: Anode Materials. — It might be expected that the phase fractions of the \(\text{Li}_5\text{SnO} \) anode material can be determined with the recoil-free fraction information from the standard samples. Qualitative phase fractions can be obtained from Tables I and II, but we cannot quantify them further owing to the following interesting phenomenon.
Mössbauer spectra from the sample of Li$_5$SnO were measured at 11 K and 300 K. We can use Eqs. 1 and 2 to eliminate the phase fractions to compare the temperature dependencies of the recoil-free fractions:

\[
\frac{R_{\text{SnO}_2/\text{Sn}}}{R_{\text{SnO}_2/\text{Sn}}(11K)} = \frac{I_{\text{SnO}_2}(RT) I_{\beta\text{Sn}}(11K)}{I_{\beta\text{Sn}}(RT) I_{\text{SnO}_2}(11K)}
\]

(8)

Using our own experimental results from the calibration standards, we obtain \(R_{\text{SnO}_2/\text{Sn}} = 5.4\). From the data in Table I for the anode material of Li$_5$SnO, we obtain \(R_{\text{SnO}_2/\text{Sn}} = 2.3 \pm 0.8\) (or 1.2 for the less-reliable RT results after 11K exposure).

This unexpectedly different result for \(R_{\text{SnO}_2/\text{Sn}}\) for the standards and for the anode material is well beyond expected errors, and can have two explanations. Either the effective Debye temperature of the \(\beta\)-Sn in the anode materials is higher than that of the \(\beta\)-Sn in the control sample, or the Debye temperature of the Sn$^{4+}$ in the anode material (nominally SnO$_2$) is lower than that of the Sn$^{4+}$ in the control sample of SnO$_2$. We cannot prove one case or the other from the measurements we have performed. One argument is that the Debye temperature of the SnO$_2$ in the anode material is lower than that of the control sample, because atomic-scale defects in oxide structure can suppress the Debye temperature. Assuming the \(\beta\)-Sn in the anode material to have a Debye temperature of 134 K, we obtain a Debye temperature of 146 K for the the Sn$^{4+}$ in the anode material. Another argument is that electropositive Li neighbors may increase the phonon frequencies of \(\beta\)-Sn. We expect that electropositive Li neighbors can alter one way or another the phonon frequencies of \(\beta\)-Sn [38], but it is not clear if the frequencies will increase when the small \(\beta\)-Sn particles are of 10 nm spatial dimensions. We consider it less likely that the anomalous behavior of \(R_{\text{SnO}_2/\text{Sn}}\) originates with a stiffening of the vibrational frequencies in the \(\beta\)-Sn, which would need a Debye temperature close to that of SnO$_2$. Either case, however, requires that the microstructure of the anode material contain disorder on nanometer or sub-nanometer dimensions.
One might expect to use the results from x-ray diffractometry to quantify the fractions of phases in the anode material, but we detected no SnO\(_2\) in the x-ray diffraction patterns. We offer the following interpretation of these results on the SnO\(_2\), in the anode material. First, the Mössbauer spectrometry tells us only that the Sn is Sn\(^{4+}\), not necessarily the structure of crystalline bulk SnO\(_2\). The hyperfine parameters of the Sn\(^{4+}\) in the anode material differ from those reported in bulk SnO\(_2\). In the next section we describe how the Sn\(^{4+}\) spectrum of the anode materials evolved to that characteristic of SnO\(_2\) when the anode material was exposed to ambient air over a long period of time. The initial Sn\(^{4+}\) ion the anode material is not in the expected local structure of SnO\(_2\). The absence of distinct x-ray diffraction peaks indicates that the Sn\(^{4+}\) oxide is either present as extremely small particles, or as an amorphous phase (or both). The anomalous ratio of \(\mathcal{R}_{\text{SnO}_2/\text{Sn}}\) for Sn in the electrode material tends to support the interpretation of small particles, although an amorphous oxide could also have a low recoil free fraction, and would be less visible in an x-ray diffraction pattern.

Oxidation in Ambient Air

Figures 6 and 7 present x-ray diffraction patterns from the Li\(_{2.3}\)SnO and Li\(_{5}\)SnO materials during long-term exposure to ambient air at 300 K. All samples show the same trends, and oxidation proceeds in two stages. The initial Li-Sn alloy undergoes a separation into β-Sn and Li oxide over a period of about 30 minutes for the Li\(_{2.3}\)SnO and several hours for the Li\(_{5}\)SnO anode material. This process is followed by a much slower oxidation of the β-Sn by the formation of SnO\(_2\) observed by Mössbauer spectrometry.

Figures 9-10 present Mössbauer spectra from the Li\(_{2.3}\)SnO, Li\(_{5}\)SnO and Li\(_{22}\)Sn\(_{5}\) materials during long-term exposure to ambient atmosphere at 300 K. All samples show the same trends, and these trends are in good agreement with the results from x-ray diffractometry. The initial Li-Sn alloy undergoes a separation into β-Sn and Li oxide, without the formation of Sn\(^{4+}\). This process is followed by a much slower oxidation of the β-Sn by the formation of Sn\(^{4+}\), which approaches the spectrum of SnO\(_2\). In the early stages of oxidation, for both the Li\(_{2.3}\)SnO,
Li$_{22}$Sn$_5$, and Li$_5$SnO, the hyperfine parameters of the Sn$^{4+}$ differ from those of crystalline SnO$_2$, but both samples show a trend towards a symmetric quadrupole doublet, approaching it over 100 days or so. Since the SnO$_2$ formation was observed clearly by Mössbauer spectrometry, but not by x-ray diffractometry, we suggest that this oxide has an amorphous structure.

The spectra of Li$_{22}$Sn$_5$ exposed to air for more than 100 days show two small peaks at 1.89 mm/s and at 3.61 mm/s with $QS = 1.72 \pm 0.04$ mm/s and $IS = 2.75 \pm 0.04$ mm/s, which are typical of Sn$^{2+}$ in SnO [23-26,30,39]. The hyperfine parameters depend on the structure, and the parameters found here agree with those of amorphous Sn$^{2+}$O [39] and of ultrafine oxidized Sn particles [25], but not with those of crystalline tetragonal SnO [40,41].

We observed a curious small peak at 4 mm/s in the anode material undergoing oxidation. This peak is probably real, but is not easy to understand. It could be one peak of a quadrupole doublet from an environment with a large electric field gradient, for instance surface SnO, Sn$_2$O$_3$ or amorphous SnO$_x$. Perhaps it originates with an unusual crystal structure of Sn such as electrochemically-prepared allotropic forms of Sn "α2-Sn" (refs 3-3 to 3-6), fcc diamond type (ref. 3-3), lattice parameters of about 5.66 Å for IS about 4.10 mm/s. Ref 3-5 gives EQ=0, IS= 4.08±0.05 mm/s.

Thermodynamics of Anode Reactions and Oxidation

The initial insertion reaction of Li into SnO is the energetically favorable reaction of Li oxidation, which occurs with a change in chemical potential of the Li atom of about 3 eV with respect to the Li metal reference electrode. The capacity of this reaction to consume Li is much smaller than the subsequent reaction at about 0.5 V, which involves the formation of a Li-rich Li-Sn alloy, evidently the compound Li$_{22}$Sn$_5$. Experimental evidence for these two reactions is seen in Fig. 1 at the voltages of 3 and 0.4 V. Note, however, that the first reaction of Li oxidation has a much larger capacity than expected from the formation of Li$_2$O or LiO. We
attribute this excessive consumption of Li to the decomposition of electrolyte, as for example in
the formation of the surface-electrolyte interphase (SEI). Neither the oxidation of Li in reacting
with SnO, nor the oxidation of Li during electrolyte decomposition, are reversible reactions in
normal cell operation.

On the other hand, the second reaction below 0.8 V with respect to the Li reference electrode
is reversible in normal cell operation. In some Sn oxide anode materials the formation of a Li-
Sn alloy may occur in stages involving a number of intermediate alloy compounds [8-14, 41],
but for our initial SnO anode we find evidence only for the formation of the Li$_{22}$Sn$_5$
intermetallic compound. From the data of Fig. 1, it appears that when the Sn is fully utilized in
this compound, the subsequent reaction is the deposition of Li metal on the anode. This is the
third reaction shown at 0.0 V. This reaction is perhaps electrochemically reversible, but it is
likely that the electroplating of Li will cause changes to the anode or SEI.

With the exposure of the anode material to oxygen in the ambient air, the system is opened
and new reactions occur. The first reaction is the same as occurs in the first charging of an
electrochemical cell — more Li will oxidize. This reaction is favored thermodynamically more
than the oxidation of the Sn, but oxidation of the Sn is expected once the Li is consumed. The
oxidation of the Li occurs in tens of minutes, whereas the Sn oxidation occurs over tens of
days. The oxidation of Li is strongly favored kinetically over the oxidation of Sn, suggesting
that a higher diffusive mobility of Li atoms than Sn atoms may play a role in the kinetics of
oxidation.

The total free energy change of each reaction must be favorable. In the first reaction of
lithiation of SnO or oxidation of the anode material in air, for example, the Li oxides must be
more stable than the Sn oxides if Li oxidation is to occur. This is true, with the difference in
standard energies of formation of these compounds being about 30 kJ/mol. The chemical bonds
involving Li are stronger than those involving Sn, and the electrode reactions can be understood
by consideration of the Li alone. The exception is the final oxidation of Sn in ambient air.
which does not involve further changes to any Li. It is interesting that per Sn atom, the
standard free energies of formation of SnO and SnO$_2$ are not very different, being -252 and
-258 kJ/mole, respectively. Mössbauer spectrometry showed that the formation of Sn$^{4+}$ in a
structure related to SnO$_2$ was the dominant reaction during the exposure of Li$_{22}$Sn$_5$ to ambient
air, but with increasing time there was the formation of some Sn$^{2+}$ as in SnO.

Conclusions

Mössbauer spectrometry and x-ray diffractometry measurements were performed on anode
materials of SnO in which Li was inserted electrochemically. Standard samples were prepared
of β-Sn, Li$_{22}$Sn$_5$, and SnO$_2$, from which hyperfine parameters and ratios of recoil-free
fractions were determined at room temperature and 11 K. In anode materials, at low Li
capacities the SnO is reduced to small particles of β-Sn. The Sn$^{4+}$ in the anode material had an
anomalous temperature dependence of its r.f.f., indicating severely defective structure on the
atomic scale. The lack of x-ray diffraction peaks from a Sn oxide indicate that the Sn$^{4+}$ is in an
amorphous oxide, and may have small spatial features as well. The Sn in the Li$_{22}$Sn$_5$ has a
larger Debye temperature than the Sn in β-Sn. With increasing Li concentration, there was first
the formation of β-Sn as small particles of ~10 nm dimension, and Li oxide, which may have
been amorphous. With more Li insertion, a Li-Sn alloy was formed. This alloy seems to have
been exclusively the Li$_{22}$Sn$_5$ intermetallic compound. Although the Li$_{22}$Sn$_5$ develops over a
range of Li concentrations in the anode material, from x-ray diffractometry it appears that the
Li$_{22}$Sn$_5$ that forms at low Li insertions is more defective than bulk Li$_{22}$Sn$_5$. From coulometric
titrations this crystallographically-defective Li$_{22}$Sn$_5$ appears to have a more favorable chemical
potential for Li atoms.

Although the reactions in SnO-Li electrode materials involve all atom species, the
thermodynamic tendencies for these reactions were dominated by the chemical preferences of
the Li atoms. The voltages of these reactions show that the initial insertion of Li into SnO is
accompanied by an additional oxidation of Li, which we interpret as electrolyte decomposition in the formation of a surface-electrolyte interphase (SEI), for example. The irreversible capacity for this initial insertion of Li is large, being 500 mAh/g. The remaining cycles are largely reversible, with Li atoms inserting into and de-inserting from metallic alloys that include Li$_{22}$Sn$_5$. While the early cycles showed an excellent reversible capacity of greater than 600 mAh/g, the material has an unfortunately short cycle life of perhaps 30 cycles.

We also studied the oxidation of Li-charged anode materials and Li-Sn alloys during long-term atmospheric exposure. The oxidation tendencies involved a quick selective oxidation of Li that occurred over tens of minutes. In this initial process, the β-Sn first separated from the Li-Sn alloy. The β-Sn then oxidized over longer times of weeks, forming primarily Sn$^{4+}$ but later a small amount of Sn$^{2+}$. The hyperfine parameters of the Mössbauer spectra indicate that in the early stages of oxidation of the Sn, there is a formation of amorphous, small, or highly defective oxides with Sn$^{4+}$.

Acknowledgments

We thank Prof. B. Malaman (Universite Henri Poincare, Nancy I) for useful discussions. The work at Caltech was supported by DOE through Basic Energy Sciences Grant DE-FG03-94ER14493.
References

Table I. Relative spectral areas f_i (i=1,2,3) at 300 K and at 11 K for the Sn$^{4+}$, Li-Sn alloy and β-Sn contributions in Li$_5$Sn$_0$.

<table>
<thead>
<tr>
<th>Sample</th>
<th>f_1 (Sn$^{4+}$)</th>
<th>f_2 (alloy)</th>
<th>f_3 (β-Sn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 K as-prepared</td>
<td>0.09</td>
<td>0.76</td>
<td>0.15</td>
</tr>
<tr>
<td>at 11 K</td>
<td>0.16</td>
<td>0.23</td>
<td>0.61</td>
</tr>
<tr>
<td>300 K after 11 K</td>
<td>0.10</td>
<td>0.59</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Table II. Relative spectral areas f_i (i=1,2,3) at 300 K and at 11 K for the Sn$^{4+}$, Li-Sn alloy and β-Sn contributions in Li$_{2.3}$Sn$_0$.

<table>
<thead>
<tr>
<th>Sample</th>
<th>f_1 (Sn$^{4+}$)</th>
<th>f_2 (alloy)</th>
<th>f_3 (β-Sn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 K as-prepared</td>
<td>0.01</td>
<td>0.36</td>
<td>0.63</td>
</tr>
<tr>
<td>at 11 K</td>
<td>0.07</td>
<td>0.10</td>
<td>0.83</td>
</tr>
<tr>
<td>300 K after 11 K</td>
<td>0.12</td>
<td>0.0</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1. First pair of electrochemical charge and discharge curves on SnO anode at 0.02 mA/cm². Anodes for further analysis were obtained from samples charged initially to x=2.3 and x=5, as marked approximately on the figure.

Fig. 2. Capacity fade data on full cell of SnO anode with LiCoO₂ cathode with 0.43 mA/cm².

Fig. 3. X-ray diffraction patterns of Li₂₂Sn₅ alloy, and Sn oxide materials, LiₓSnO, charged initially to x=2.3 and x=5.

Fig. 4. Bright field transmission electron micrograph of the Li₅SnO material.

Fig. 5. Top: transmission Mössbauer spectra of β-Sn, Li₂₂Sn₅, and SnO₂
Middle: deconvoluted Mössbauer spectra of β-Sn, Li₂₂Sn₅, and SnO₂
Bottom: deconvoluted Mössbauer spectra from Sn oxide materials, LiₓSnO, charged to x=2.3 and x=5.

Fig. 6. X-ray diffraction patterns from Li₂.₃SnO anode material exposed to ambient air for various times.

Fig. 7. X-ray diffraction patterns from Li₅SnO anode material exposed to ambient air for various times.

Fig. 8. Deconvoluted room temperature Mössbauer spectra from Li₂.₃SnO anode material exposed to ambient air for various times.

Fig. 9. Deconvoluted room temperature Mössbauer spectra from Li₅SnO anode material exposed to ambient air for various times.

Fig. 10. Deconvoluted room temperature Mössbauer spectra from Li₂₂Sn₅ alloy exposed to ambient air for various times.
Intensity

2θ (degrees)