A common-path, multi-channel heterodyne laser interferometer for sub-nanometer surface metrology

Feng Zhao, Jennifer E. Logan, Stuart Shaklan, and Michael Shao

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, California 91109, U.S.A.
Objective

• To measure thermal stability of telescopes and other optical subsystems;
 – measurement of changes in surface figure (wavefront) at subnanometer level (~100pm or better).
Enabling Technology: CCommon-Path Heterodyne Interferometer (COPHI)

- Measure the heterodyne signal phase between sub-apertures using a 2-D detector array;
- Construct a 2-D phase map (relative surface height);
- Heterodyne detection ensures picometer level measurement.
Features of COPHI

- Common-path reduces:
 - fringe phase error due to laser frequency and power fluctuations;
 - optical path length error caused by structural vibrations (piston mode).

- Wide applications:
 - thermal deformations of optics;
 - beam walk (single mirror, compressor, delay line, etc.);
 - corner cube articulation error;
 - on-board wavefront monitoring, etc.
Instrument Schematic
Heterodyne Laser Source

- Because reference and unknown signals are common mode, laser frequency noise and intensity fluctuations are cancelled.

- Two PM fiber pigtailed output;
- 10KHz heterodyne frequency;
- Heterodyne frequency stability: 1ppm/hr;
- 1:4 power ratio (8mW:30mW);
- $\lambda = 532$nm.
Athermalization of Key Optical Components

- Use low CTE material such as Zerodur off-axis parabolic reflector to reduce wavefront distortion;
- Zerodur base plate to reduce defocusing error;
- Compromise reflection distortion (CTE only) with transmission distortion (both CTE and dndT) in selecting substrate material for the two beam splitters;
- Super-Invar micrometer screws on BS mount to maintain pointing stability;
- De-couple radiation from others by:
 - aluminize chopping mirror and parabolic mirrors;
 - quartz window (IR opaque)
COPHI Collimator Assembly

Beam splitter mounts

Shearing interferogram indicates high quality collimation

PM fibers

Zerodur plate

Off-axis parabola
What We Care About Is the CHANGE in Temp Gradient

- Change is much smaller than static temp gradient;
- A simplified model to estimate the required temp gradient stability;
 - Front-back (axial) temp gradient stability;
 - Center-edge (radial) temp gradient stability.
Reduce Thermal Stability Requirement by Periodic Referencing

- Use a stable reference mirror ("chopping mirror") to periodically calibrate the wavefront error in the interferometer setup;
- Reduce the thermal stability requirement from $0.x \text{ mK/hr}$ to $0.x \text{ mK/a few min}$;
- Positioning repeatability:
 - 1 μm, linear;
 - 1 μrad, angular;
Derived Temp Stability Requirement of Key Optical Components

<table>
<thead>
<tr>
<th></th>
<th>Parabolic mirror (Zerodur-2)</th>
<th>Beam splitter (fused silica)</th>
<th>Chopping mirror (Zerodur-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk temperature stability</td>
<td>16.000</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Temp gradient stability (front-back)</td>
<td>1.600</td>
<td>0.080</td>
<td>1.778</td>
</tr>
<tr>
<td>Temp gradient stability (radial)</td>
<td>1.600</td>
<td>0.015</td>
<td>8.000</td>
</tr>
</tbody>
</table>

Notes:
1. Operating temperature range 15-35 deg C;
2. All temperature units are in mili Kelvin (mK);
3. Stability refers to 5 minutes time period;
4. Both parabolic mirrors are aluminized;
5. Chopping mirror dimension: 3-inch diameter, 0.5-in thick. Substrate material: Zerodur expansion class-0;
6. Chopping mirror is aluminized;
7. Beam splitter substrate material: fused silica; coating: 50/50 dielectric on one surface, and AR dielectric on other surface;
8. Laser power dissipated in beam splitter: 0.3mW at BS1, and 0.01mW at BS2; (estimate by assuming 1% absorption) Laser power fluctuation < 2%;
9. The front-back temperature requirement applies between any two points on the front and back surfaces of the optical element;
10. The radial temperature requirement applies between any two points across the central 50mm area of the optical element;
11. Prefer less than one week to reach this quasi-equilibrium condition after pump-down;
12. Temperature stability on other components: estimated 10mK.

June 18, 1999

ICOSN'99

FZ-11
Stray Light

- Coherent stray light will cause a phase error in the heterodyne signal;
- Only **TIME-VARYING** part of this phase error is important because COPHI is to measure surface deformations, i.e., changes in phase;

$$\frac{d\phi}{dt} = \frac{d}{dt}(\phi_{un} - \phi_{ref}) + \frac{d\phi_{s1}}{dt} - \frac{d\phi_{s2}}{dt}$$

- The contribution of stray light can be negligible if ϕ_s is constant (including $=0$)

- **Averaging reduces the error:**
 - stray light incident angle;
 - detector area;
 - stray light wavefront quality;
 - dithering in time and integrate.
Stray Light Control in COPHI

- Reflection from back surface of the beam splitters:
 - 0.5 deg wedge;
 - -30dB reflection (AR coating), -30dB isolation using spatial filtering;
 - average ~100 fringes across 5mm aperture;
 - constant in phase ($\Delta \theta < 0.002 \text{ rad}$) because of thermal stabilization, and proportional in amplitude;
 - ~1pm
- Scattering from dust:
 - add a constant phase offset by “static dusts” (such as scratches on optics);
 - need clean environment to avoid “mobile” dusts;
 - not a concern in clean vacuum chamber
- Reflection from fiber tip:
 - APC connector (angle-polished, 16 deg) to launch fiber light;
 - reflected beam off by 32 deg, misses the parabola (f/5, 6 deg half angle);
 - not a concern;
- Reflection from detectors:
 - “spatially incoherent” (phase randomization) by using home-made “diffuser”;
 - not a concern;
- Reflection imaging optics:
 - AR coating (v-type);
 - can tilt lens without losing imaging “quality” (our “camera” has only 10X10 pixels);
 - need to be careful in selecting lenses (curvatures) that don’t send a reflection right into the detector.
Effects of Vibration

- Insensitive to piston mode because of common path, a big plus;
- Tip/tilt modes ranging from 1Hz to 0.1Hz will cause an error in the constructed surface map:
 - 2-D array pixels are NOT measured at the same time;
 - different rows in the detector array may see different tip/tilt (in the 1 - 10 seconds time frame);
 - need to remove the tip/tilt error from each row before construction of the phase map;
- Our solution:
 - dedicate 2 detectors as tip/tilt sensors;
 - continuously measure the tip/tilt between the measurement and reference wavefronts;
 - remove the tip/tilt error from each row measurement before constructing the surface map.
Detector Array

- 10 X 10 detectors;
 - thermal deformation generally in low spatial frequency;
 - compatible with number of nodal points in thermal modeling of a surface;
- Si PIN photo-diode with low power dissipation amplifier;
- Reference to one common detector;
- Two detectors to measure tip/tilt (0.1-1Hz);
- Printed-circuit boards to align diodes and improve thermal conduction with a copper layer;
- “Diffuser” to achieve more uniform and more stable illumination on the photo-diode active region;
- Aperture positioning tolerance ~1µm.
DAQ Block Diagram

- Use modified version of current 1-D metrology electronics H/W and S/W;
- 100 X 10 MUX to handle 100 channels;
- 2 high precision phase-meter boards (total 12 channels, 2 used for tip/tilt);
- 2 tip/tilt channels are “on” all the time.
Data Acquisition Electronics

- A 100 X 10 MUX board in vacuum to switch 10×10 channels sequentially (switching time < 100ms);
- ~ 0.1 mfringe instantaneous phase resolution, and 1 μfringe for averaging over 1 sec;
 - optical power about 1μW per channel at λ=532nm, fringe visibility ~ 0.5;
 - carrier frequency (heterodyne frequency) is 10KHz;
- Stability of total delay (from where photoelectrons are generated to phase meter) <200 ps/hr between ref and unknown channels.
Summary

- Proposed COPHI concept for subnanometer surface metrology;
 - measurement of changes of surface figure and wavefront stability;

- Common-path reduces:
 - fringe phase error due to laser frequency and intensity fluctuations;
 - optical path length error caused by structural vibrations (piston mode).

- Integration and test under way;

- Broad potential applications:
 - thermal deformations of optics; beam walk (single mirror, compressor, delay line, etc.); corner cube articulation error; and on-board wavefront monitoring.