AIAA 99-2273
Post-Launch Performance Characterization of the Xenon Feed System on Deep Space One
Gani B. Ganapathi and Carl S. Engelbrecht

35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
20-24 June, 1999
Los Angeles, CA
Propulsion for the Deep Space One (DS1) spacecraft is provided by a xenon ion engine. Xenon is stored in a supercritical state and is delivered as a low pressure gas to the thruster and two cathodes (called the main cathode and neutralizer) by a Xenon Feed System (XFS). This mission requires tight constraints on thruster performance, which in turn requires separate and very accurate throttling of the thruster and cathode flows; the DS1 spacecraft is the first of its type to utilize a xenon ion engine that can be throttled. Flow is regulated separately to the thruster and cathodes to an accuracy of ± 3% using two calibrated Flow Control Devices (FCDs) which are each fed by a dedicated plenum tank. Bang-bang regulators are used to control the set pressures in the plena. The resulting XFS control algorithms are quite complex. This paper discusses how the XFS is controlled for its various modes of operation (e.g. normal operation, throttling up, and throttling down). The performance of the XFS is also discussed; predicted performance is compared with actual data obtained pre- and post-launch to verify that the XFS is performing as expected in flight. The comparisons indicate that the XFS is performing as expected.

Introduction

Deep Space One, launched on October 24th, 1998 by a Delta II launch vehicle, is the first spacecraft with a throttleable ion propulsion system (IPS) used for primary propulsion. Its primary mission is to validate 12 new technologies of which the IPS is the key one. As part of the primary mission, it is scheduled to fly by an asteroid, 1992 KD in July '99. An extended mission is planned for two additional fly-bys to comets Wilson-Harrington in Jan '01 and Borrelly in Sept. '01. The propulsion system, developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program, includes a 30 cm gridded ion engine which is capable of providing a maximum thrust of 92 mN at an Isp of approximately 3100 sec. The working fluid for this engine is xenon, stored in a supercritical state to optimize tank mass and volume, and delivered at low pressures to the engine by the Xenon Feed System (XFS). The purpose of this paper is to detail the performance of the XFS following launch and compare it with what was predicted.

XFS History

The original NSTAR XFS design was capable of providing only a single xenon flow rate; the flow rate ratio between the thruster and cathodes was fixed. However, as NSTAR requirements evolved, the XFS became more complex, leading ultimately to the flight model, a schematic of which is shown in Fig. 1. The XFS was designed and built under an industrial partnering relationship between JPL and Moog, Inc., Space Products Division; Moog Inc. built the Xenon Control Assembly (XCA). The XCA consists of the plate-mounted control components such as the latch valves, solenoid valves, etc., while the XFS is the overall system consisting of the XCA, the tanks, tubing and flex lines to the thruster. More details on the XCA components are documented in ref. 1.

The XFS propellant tank was manufactured by Lincoln Composites, and the plenum tanks were manufactured by Structural Composites, Inc. (SCI). The FCD assemblies, made up of a sintered metal disc flow restrictor and an integral sintered metal inlet filter, were manufactured by Mott, Inc.

An engineering model of the XFS was built at JPL and used to verify many of the performance characteristics of the flight feed system. Following delivery of the flight XCA from the vendor and integration into the spacecraft, functional testing was conducted to verify key performance parameters. Examples of such tests included verifying xenon flow control, throttle up and throttle down times. In addition, leak tests were performed to verify all component leak rates were within specifications. The thermal design of the entire spacecraft, including the XFS, was validated (with modifications) in a...
simulated space environment where various phases of the mission were simulated.

XFS Description and Requirements

The XFS schematic is shown below in Figure 1. Tank T1 was initially loaded with 81.5 kg of xenon; the tank has a volume of 49.2 liters. The initial load pressure at 21 °C was 1099 psia. “Bang-bang” regulators R1 and R2 (each made up of an assembly of two series solenoid valves) are used to regulate pressure in the plenum tanks A1 and A2. The 3.7-liter plenum tanks are required to smooth out the pressure spikes associated with the “bang-bang” regulators. Latch valves LV3, and LV4 provide a third seal between the high-pressure propellant tank and the low-pressure plena, to assure the prevention of overpressurization of the plena during ground handling. LV1 and LV2 provide on-off control of flow to the engine, and LV5 provides a means of operating the XFS in case of failure in one of the flow branches. (No discussion of off-nominal XFS operation is included here, see ref. 2 for details.) The flow control devices (FCDs) J1, J2, and J3 are used to regulate the flow to the engine, and flex lines FL1, FL2 and FL3 are required to allow engine gimballing.

![NSTAR XFS SCHEMATIC](image)

Figure 1. NSTAR/XFS Schematic

and R2 (each made up of an assembly of two series solenoid valves) are used to regulate pressure in the plenum tanks A1 and A2. The 3.7-liter plenum tanks are required to smooth out the pressure spikes associated with the “bang-bang” regulators. Latch valves LV3, and LV4 provide a third seal between the high-pressure propellant tank and the low-pressure plena, to assure the prevention of overpressurization of the plena during ground handling. LV1 and LV2 provide on-off control of flow to the engine, and LV5 provides a means of operating the XFS in case of failure in one of the flow branches. (No discussion of off-nominal XFS operation is included here, see ref. 2 for details.) The flow control devices (FCDs) J1, J2, and J3 are used to regulate the flow to the engine, and flex lines FL1, FL2 and FL3 are required to allow engine gimballing.

A multi-dimensional trade study was performed to determine optimized plenum characteristics. “Bang-bang” regulator manufacturing tolerances and cycle life, range safety considerations, pressure and temperature sensor accuracy, and other variables were considered. The resulting system has a 0.5 cc inter-solenoid volume and 3.7 liter plenum tanks with a pressure range of 40 – 99 psia for the main plenum and 40 – 50 psia for the cathode plenum.

Each plenum tank is instrumented with a set of three temperature-corrected (hardware and software) Taber pressure transducers (maximum range = 150 psia; accuracy = 0.1% FS). The transducers are polled and the average is used for the control algorithm (discussed later). In the event one transducer from a set drifts significantly from the average, its telemetry is discarded and the average of the other two is used.

The FCDs were procured from Mott, Inc based on low cost and turn-around time considerations. Turn-around time is very important since the procurement process involves fine-tuning the flow rates based on tests at JPL and the whole process involves a few iterations. The FCDs were flight qualified by JPL. A comprehensive test plan was developed for procuring and calibrating the FCDs for the required flow accuracies. For the sake of brevity, only the error analysis is presented in the following section.

The key XFS requirements, which relate to this paper, are shown in Table 1 below; a full set of requirements is documented in the NSTAR document ND-330 (ref. 2).

<table>
<thead>
<tr>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Xe load (kg)</td>
</tr>
<tr>
<td>Flow accuracy</td>
</tr>
<tr>
<td>Flow range (16 throttle levels);</td>
</tr>
<tr>
<td>(mg/sec)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 1. Selected requirements for XFS

The XFS is capable of providing 16 discrete throttle level flow rates. The engine is designed to optimize thrust level based on available solar power. Thus, when the spacecraft is close to the sun, it can throttle at a higher level than when it is further away. DS1 currently can utilize only 12 of the available 16 levels due to available power constraints. Figure 2 below depicts the mission throttle levels and distance from sun as a function of time after launch.
Figure 2. Digital Control Interface Unit (DCIU) Throttle level and distance from sun as function of time after launch.

In order to ascertain that the XFS would satisfy the requirements imposed on it, an error analysis was conducted. The results are presented in the next section.

Feed System Flow Uncertainty

The flow uncertainty of the XFS is made up of systematic and random error components. The systematic error would constitute items such as pressure transducer drift and “sawtooth” error due to the pressure profile within the plena caused by the bang-bang regulator operational characteristics. Random errors are due to uncertainties in the transducers, calibration, modeling, etc. The systematic errors are typically additive and the random errors are root mean squared together. Figure 3 depicts the contributions due to random and systematic errors.

Figure 3. Systematic and random errors in flow.

The FCD characterization error is discussed first since this is the most involved. JPL’s FCD test stand utilizes mass flow meters, which are calibrated prior to each FCD characterization using an MKS A-200

Califlow system. The Califlow system, which is primary standard traceable to NIST, measures flow in the 1 to 50,000 SCCM range with an accuracy of 0.2% of flow over the entire range. The calibration procedure involves automatically recording voltages indicated by the mass flowmeter, as well as the temperatures and test pressures. The flowmeter is calibrated over a range of flow rates and pressures representative of flight conditions. For all the tests, MKS mass flowmeters were utilized; however different units were used to measure main and cathode flows. The uncertainties associated with the different elements in the calibration process are:

- Califlow: ±0.2% of flow
- Voltage uncertainty: ±0.1%
- Calibration curve fit error: ±0.26%
- Temperature correction ±0.15%

The resulting flow calibration uncertainty, σ_{calib}, is equal to ± 0.37% (the root mean square of the above-listed components).

With a calibrated mass flowmeter, the FCDs were characterized with temperatures ranging from 20 to 50 °C and upstream pressures ranging from 35 to 99 psia for main and 35 to 75 psia for cathode FCDs. The downstream pressure was maintained below a few torr in all cases.

The flow characteristic of a porous plug such as the Mott device can be modeled as:

$$\frac{p_1^2 - p_2^2}{L} = \frac{2aRT\mu G}{Mg_c} + \frac{2\beta RTG^2}{Mg_c}$$

In equation (1) p_1 and p_2 are upstream and downstream pressures respectively, G is the superficial mass velocity, g_c is a dimensionless constant, M is the molecular weight, R is the gas constant, T is absolute temperature, α and β are constants representative of the porous plug and μ is the viscosity of the gas. However, this model was not adequate as the error in fit was almost ± 2%. An alternate non-phenomenological model was therefore developed with a curve fit error less than ± 0.8% over the entire range of pressures and temperatures. The model was of the form

$$\text{Flow}(\text{press, temp}) = a_0 + a_1*\text{press} + a_2*\text{press}^2 + a_3*\text{press}^3 + a_4*\text{temp} + a_5*\text{press*temp} + a_6*\text{temp}^2 + a_7*\text{press*temp}^2 + a_8*\text{temp}^3$$

(2)

American Institute of Aeronautics and Astronautics
This equation also has the advantage of being explicit in flow with the caveat that the downstream pressure is below 40 torr.

When the uncertainties in test stand pressure and temp sensors are included, the model uncertainty is given by

$$\sigma_{mod} = \sqrt{\sigma_{mod,fl}^2 + \sigma_{temp}^2 + 2\sigma_{press}^2 + \sigma_{calibr}^2}$$

(3)

A point to be noted in eqn (3) is that any uncertainty in the pressure will result in an approximately twofold increase in flow uncertainty, due to the approximately parabolic nature of the flow-pressure curve in the regime of interest.

The uncertainties in test stand pressure and temperature are ± 0.1 psi and ± 0.5 °C respectively. Thus, for a worst case pressure of 40 psia and 20 °C (293 K), the model uncertainty is ~ ± 1.2%

In flight, the flow uncertainty is a function of the above model uncertainty of ± 1.2% and plenum pressure and FCD temperature sensor uncertainties which are ± 0.3 psi and ± 1 °C respectively; the corresponding worst case rms flow uncertainty due to random errors is ~ ± 1.9%

The sawtooth error component is additive to the random error and when averaged over many regulator cycles, the maximum sawtooth error can be as high as ± 1% of flow. Thus, the total worst case uncertainty in flow is ± 2.9%. The actual error will be less and is shown in Figure 4 below as function of mission profile.

From Fig. 4, it can be seen that as the mission progresses, the systematic error due to sawtooth decreases, as one would expect, due to lower pressure slugs being used to pressurize the plena. The random error can be seen to be a function of the throttle level, with lower pressures contributing to larger uncertainties in flow (see Figure 2 for throttle levels). However, the maximum error is less than 1.9% as mentioned earlier.

Regions where the errors are zero correspond to times where there is no thrusting and hence no flow.

In this error analysis it is assumed that the pressure transducer drift is zero, which may be valid only for the early stages of the mission; however, the sawtooth error decreases as xenon is consumed and will partly compensate. The true error will be unknown.

In the next section we shall examine how the XFS is controlled by the DCIU to provide xenon flow to the engine under steady state conditions and while throttling.

Control of the XFS

NSTAR thruster and XFS operations are controlled by the Digital Control Interface Unit (DCIU). It is a ~2 kg 30x15x15 cm box utilizing less than 12 W. It is partitioned into 3 VME boards; a processor board, a data acquisition board and a valve driver board. The DCIU controls the XFS using the control algorithm shown in Figure 5. Note that this control algorithm allows control during steady-state and throttling, and also has logic to handle fault situations such as leakage or failure of the XFS latch and/or solenoid valves. The fault protection and its responses are beyond the scope of this paper. The DCIU polls all of the XFS temperature and pressure transducers every second and all telemetry values are updated for control and communication purposes.

The DCIU control algorithm compares the required and measured pressures (both corrected for temperature) and activates the solenoids to pressurize the plena if the measured pressure values are less than the required values. During steady state operations, the plena are in a continuous state of blowdown, and periodic replenishment via regulator activation is essential to maintain the flow rates. During throttle up, the latch valves LV1 and LV2 can be either closed or open depending on if the throttling is done prior to starting the engine or throttling up while the engine is thrusting - the DCIU allows both

American Institute of Aeronautics and Astronautics
modes of throttling up. During throttle down, as the required pressure is less than the measured pressure,

XFS CONTROL ALGORITHM
(Main Side Only)

Figure 5. XFS control algorithm flowchart.

no action is taken by the DCIU till they match. At this point, the DCIU continues with the normal steady state control scheme.

By referring to Fig. 5 above, the steady state DCIU control sequence would be as follows:
1) Ground command determines the throttle level for the spacecraft.
2) Based on the throttle level, a throttle look-up table in the DCIU is used to set the required nominal plenum tank pressures.
3) The nominal required pressures are then adjusted for FCD temperatures. An increase in FCD temperature has to be compensated by an increase in required pressure and visa versa to maintain a constant flow rate. These adjustments are based on 4-point linear interpolations of pressure correction values in look-up tables; there are two such 16x16 look-up tables in the DCIU, one for each flow branch. A voting scheme is used to determine the average FCD temperature for the correction, where the outlying temperature value is discarded and the average of the best two are chosen. The adjusted required pressure values are called \(P_{a_{req'}} \).
4) A voting scheme similar to that in 3) is used to determine the temperatures of the pressure transducers. Each of the pressure transducer values is then corrected for temperature using a linear interpolation scheme as in 3). The corrected pressures on each branch are then averaged using a voting scheme. The averaged measured pressure values are called \(P_{a_c} \).
5) Two fault conditions are then checked for: a) over-pressurization, when \(P_{a_c} > P_{a_{req'}} \) by a pre-defined limit, and b) under-pressurization, when \(P_{a_c} < P_{a_{req'}} \) by a pre-defined limit. The fault condition limits are not the same.
6) If no fault conditions are met and if the measured pressures are less than the required ones, then the solenoids are activated to pressurize the plenum tanks.

Pressurization of a plenum tank is achieved by sequential activation of the pair of solenoid valve in the regulator as mentioned before. High-pressure xenon trapped within the inter-solenoid volume following an open/close cycle of the upstream solenoid is injected into the plenum tank when the downstream solenoid is cycled open/close. The required open times of the upstream and downstream solenoids are a function of many parameters such as supply xenon pressure and temperature, solenoid temperature, and plenum tank pressure and temperature. It is important to optimize the solenoid cycle times, as mission pressurization times can be impacted particularly later in the mission when many regulator cycles are required to pressurize the plenum tanks due to lower xenon pressure in the supply tank. Optimal open times are shown below in Fig. 6.

Figure 6. Optimal solenoid open times as function of supply pressure.
In Fig. 6, the plenum pressure is assumed to be 41.5 psia, which is representative of the lowest pressures to be seen in the plenum tanks. A worst case $\gamma = 1.7$ was assumed for all the calculations. Also, uniform temperatures for all components were assumed. Clearly, the optimal required open times pass through a peak around the critical pressure of xenon. Testing with the engineering model verified these trends and experimental values were close to model predictions.

XFS Post-Launch History

The DS1 spacecraft was launched on October 24, 1998. Two days after launch the DCIU was turned on for the first time. Post-launch telemetry indicated that all the valves were in the closed state as expected and the XFS pressures and temperatures were within expected ranges. Four days later, on October 30, the first XFS activity, FCD calibration, was started. In order to verify that the FCD calibrations did not shift as a result of launch, a plenum blowdown test was performed. In this mode, only latch valves LV1 and LV2 were opened to initiate xenon flow through the FCDs. The plenum pressures and temperatures were monitored over an eight-hour period and the pressure profile was compared with expected values. Prior to the start of the test, the thruster was turned 30° off-sun (see Figure 7 for axes, thruster, XFS plate and DCIU locations on the spacecraft). This was done to heat up the lines in the spacecraft to help outgas any adsorbed water in the lines following launch.

Figure 7. Location of XFS, DCIU on spacecraft.

On November 9, 1998, the thruster was turned on for the first time in “diode” mode. In this mode, xenon flow is initiated and ionization of the gas occurs; however the ionized gas is not accelerated through the grids and hence no effective thrust results. The engine was run in this mode to outgas any remaining water in the thruster area. On November 10, the engine was turned on to start acceptance test #1. This test was designed to test all of the IPS subsystem performance parameters at 6 different throttle levels. However, the engine after running nominally for 4.5 minutes shut itself off and it couldn’t be turned back on despite thermal cycling of the thruster and multiple restart commands. The DCIU was then turned off on November 11th and was turned back on November 24th to conduct additional thruster diagnostics. When the engine was commanded to turn on, unexpectedly, it started up and since then has continued to perform flawlessly. On November 30th the rescheduled acceptance test #1 was conducted and a significant amount of data was gathered to determine the performance of the IPS. The results are presented in the following sections below.

XFS Component Status

Latch Valves: LV1 through LV4 have been cycled less than 100 times so far (May 99). They have been qualified for over 12,000 cycles. LV5 has not been cycled in flight — this valve will only be used in the case of a fault. The pre-launch measured internal leakage rate for all latch valves were at least 2 orders of magnitude less than the required 0.001 standard cm3 per sec (scs). For post-launch, the pressures in the plenum tanks were followed for a period of two weeks where there was no thruster activity (11/10/98 to 11/24/98). Subsequent telemetry also indicated no leakage. During this time there was no discernible change in the pressures leading to the conclusion that LV1, LV2 and LV5 were not leaking. Conclusions on integrity of LV3 and LV4 was possible only by inference, but could not be proven due to the presence of solenoid valves SV1-SV4.

Pressure Transducers: The supply pressure transducer is 3000 psi full scale with a rated accuracy of ± 1.0% FS (30 psi) without a calibration lookup table. However, with the loaded calibration data in the DCIU, the accuracy is ± 1 psi. To date, there has been no drift discernible in this transducer. Any drift can be detected by comparing calculated xenon consumption by integration of flow with expected pressure at a given temperature.

There are six 150 psi low pressure transducers for the plena with three on each plenum with a rated accuracy of ± 0.1% FS with calibration lookup table. Moog acceptance tests indicated that PA5 indicated a lower pressure than the other two cathode transducers by approximately 0.2 psi. XFS functional testing indicated that in addition to PA5, PA1 on the main plenum also indicated a slightly low pressure. As a
result, the XFS is flowing a bit "rich," with an expected impact of 0.25 kg extra propellant use in the mission. The current thought is to change the calibration on these pressure transducers to rectify the problem. This may be done soon after the first asteroid encounter sometime in July 1999, after approximately 12 kg of xenon will have been consumed.

Regulators: The regulators RG1 and RG2 have been cycled 15,200 and 5,500 times respectively to date and are functioning nominally. No internal leak is discernible. A conservative 4 second open time was chosen for the DS1 initial setting. This will be reduced as the mission proceeds. The duty cycle of the regulator is a variable that can be modified by changing the delay time between solenoid activation. Currently, the DS1 is operated at a 25% duty cycle (total regulator time = 2 solenoids x 4 sec open time per solenoid / 25% duty cycle= 32 sec) to minimize thermal impacts.

Temperature sensors: There are a total of 13 temperature sensors in the XFS.

- Supply tank – 1 (±1.7 °C)
- Regulators – 2 (±0.4 °C)
- Plenum tank (only main plenum tank instrumented) – 1 (±1.7 °C)
- FCDs – 3 (±0.4 °C)
- Pressure transducers – 6 (±5 °C).

The FCD and regulator temperature sensors are 500 Ω platinum Resistance Thermometer Devices (RTDs) and are the most important ones. The temperature sensors within the pressure transducers are 100 Ω platinum RTDs and are not very important, as the pressure transducers are internally temperature compensated with software-based corrections needed only for large changes in temperature (Δ = 15-20 °C).

All of the temperature sensors with the exception of supply tank temperature sensor (telemetry channel V-4054) are functioning nominally. V-4054 was noted to have started drifting from the expected range 25 – 28 °C (due to heater cycling) to 28 – 31 °C. Fortunately, IPS operations are not impacted in any way, and this channel is not used for xenon mass calculations either, as better means exist (discussed below).

XFS Performance

Analytical models have been developed for different purposes during the design, build, test and mission operation phases of the XFS.

Since the storage and utilization of supercritical xenon was involved, it is important to understand the thermodynamics of xenon and its impact on flight operations. The behavior of xenon is best understood with the help of Fig. 8.

![Figure 8. Phase diagram for xenon](image)

Loading isotherms for the 49.62-liter supply tank ranging from -20 to +100 °C are plotted vs. pressure.

Thus, for a loading of 81.5 kg, the tank pressure will be 1220 psia at 25 °C (between 20 and 30 °C). At this pressure and temperature, xenon is supercritical. But as the xenon in the tank approaches 60 kg, it can be seen that the profile becomes very steep, particularly for isotherms close to 16.7 °C, as the xenon is close to its critical state. Very slight changes in temperature cause large shifts in pressure. Also, small uncertainties in pressure transducer readings can lead to large mass estimation errors. It is important to avoid the 2-phase boundary for many reasons and hence the previously stated requirement for the lower bound of 20 °C.

The equation of state for xenon can be represented in many different ways such as the virial equation of state, van der Waals, etc. (ref. 3). However, these equations were found to be inadequate for the accuracies required and they are implicit when solving for specific volume (or density). This places a severe constraint for many calculations where density is calculated repetitively as it impacts both
computational time and accuracy due to propagation of small errors.

The approach used for all XFS analysis was to use the NIST thermophysical properties software which utilizes a 32-term modified Benedict-Webb-Rubin (MBWR) equation of state (ref. 4). Typical uncertainties in the calculated standard reference data are about 0.1-0.3% in density, 0.5-2% in enthalpy, 2-5% in heat capacities, 2% in viscosity, and 4-6% in thermal conductivity over a broad range of state variables. Figure 8 was generated using the NIST software.

The following performance models were developed for the XFS.
1) FCD Calibration
2) Optimal regulator open time
3) Temperature correction algorithm
4) Throttling up and down
5) Xenon consumption as function of mission

In this section, comparisons between expected and actual flight data will be presented where applicable. For example, no flight data is available to validate optimal regulator open time; however, verification has been done at the engineering model feed system level. The xenon consumption model has been validated for the mission so far.

FCD Calibration: Pre-launch calibrations of the FCDs were performed on March 5, 1998. Both plena were pressurized to -75 psia and latch valves LV1 and LV2 were opened to initiate flow. After 8 hours the latch valves were closed again. The average temperature of the FCDs during this period was -21 °C. The DCIU was turned off for some portions of the test as there were some s/c-critical activities that demanded it. Post-launch FCD calibrations were performed on Oct. 30-31, 1998. The initial pressures in both tanks were ~99 psia and total period of flow was for 22 hours. There were significant variations in temperatures (28 – 36 °C) in the FCDs due to the turn to the sun mentioned earlier. Comparisons between pre- and post-flight calibrations are presented in Figures 9 and 10 in the common pressure ranges.

Figure 9. Comparison of pre- and post-launch main FCD calibration data with expected values.

Figure 10. Comparison of pre- and post-launch cathode FCD calibration data with expected values.

The above comparisons show some deviation between actual pre- and post-launch pressure profiles due to different temperatures; however the model matches the post-launch data very well.

Temperature Correction Algorithm: As mentioned in the section for control of XFS, the DCIU is loaded with two 16x16 temperature correction tables for the main and cathode plena to set the required throttle pressures which account for varying FCD temperatures. If the temperature was steady at 21.1 °C (baseline temperature), the required main plenum pressure would be 76.06 psia for a flowrate of 18.51 SCCM. However, since the temperature fluctuates between 27.5 and 28.5 °C, the required pressure...
fluctuates between 77.0 and 78.7 psia as seen in Figure 11 below.

Throttling Up: The model for predicting the time required for throttling up is based on knowledge of supply temperature and pressure, regulator temperature, plenum pressure and temperature. With latch valves LV1 and LV2 closed, the model prediction has been to within a few percent of actual flight data; however, when the throttling is done with the engine thrusting, the model prediction is not better than 15%. For example, the predicted number of cycles needed to throttle up from throttle level 6 to 9 when thrusting was 25, while the actual number was 30. Thus, the model prediction is slightly off under thrusting conditions, but this has no impact on flow performance. The reason for the discrepancy has not been established. Figure 12 below shows an example of throttling up done in acceptance test #1.

Polling Algorithm: The polling algorithm for the plenum pressure transducers was designed to account for possible drifts in the transducers. The current algorithm first averages all the 3 transducers in each branch. Then if any of the transducers' value is different from the average by 0.05%, that transducer value is discarded and the average of the other two are used. In the current implementation, 0.92 psi was used as a cut-off. However, this tolerance will be narrowed in future to 0.5 psi.

The polling algorithm tries to do a good job in the face of many possibilities. However, it needs further attention particularly on how to handle transducers which have an offset since launch. One way as mentioned earlier would be to simply change the calibration of the erring transducer since the offset is constant at all pressures.
The polling algorithm is currently causing the xenon flow to be a bit richer than required, which will impact the xenon inventory by approximately 0.25 kg if left uncorrected.

Mission Profile and Xenon consumption

The optimal trajectory for the flyby of the asteroid is based on available solar power and thrust, and the mission is designed accordingly. The xenon consumption is a function of throttle level and duration of burn. Figure 2 showed the variation of distance from sun and thrust levels. As the distance from the sun increases, the amount of power available to the solar panels decreases and hence lower thrust levels are available.

With the knowledge of mission thrust profile, it is possible to estimate the amount of xenon consumed through the mission. The estimated xenon consumption profile is shown below in Fig. 14. While integration of nominal mission flow rates is the only way to estimate future xenon consumption, there are other techniques to estimate current available xenon in the supply tank. One way would be to count the number of solenoid cycles and another would be to track the supply tank pressure and temperature and estimate mass from an equation of state. However, both approaches face problems related to the supercritical storage of xenon and are used only as backup techniques. Calculation of xenon density is required to calculate the xenon mass using the “solenoid count” and “equation of state estimate” approaches.

![Figure 14. DS1 throttle level and xenon mass profile.](image)

As the xenon pressure in the supply tank approaches the critical value, very small errors in pressure and/or temperature estimates lead to large errors in mass calculations; e.g., an error in pressure of 5 psi and an error in temperature of 1 °C around the critical point could lead to an error of up to 18 kg in mass calculations.

Predicted values of xenon consumption for the mission are based on nominal flow rates. However, actual xenon consumption values are obtained by integration of flow calculated from plenum pressures and FCD temperatures. As an example, Fig. 15 shows a close-up view of the integration for mass consumption over approximately 1.5 hours. Please note that Fig. 15 was based on the latest mission profile, and starts from Day 125; 6.6 kg xenon was consumed prior to this period.

![Figure 15. Close-up of integrated main flow.](image)

For conversion, one can use the relationship \(1 \text{ sccm} = 0.09838 \text{ mg/sec} \) to determine the amount of xenon consumed. Thus, in the above figure, 24.66 sccm/hr corresponds to 8.73 gm consumed in a 1.5 hour period. The sharp sawtooth profile on average increases the nominal flow by 0.75%. The sawtooth error is a function of many factors such as amount of xenon in the supply tank, plenum tank pressure, and temperatures. As the mission proceeds, and as xenon is consumed, this error decreases.

Summary

This paper has focused on performance related issues of the Xenon Feed System used on DS1. A range of issues have been covered including the history of the XFS, XFS description and requirements, flow error analysis, and control of the XFS. Post-launch history of the XFS touched on status of the components, and XFS performance issues such as FCD calibration, throttling and temperature correction algorithms. Xenon consumption in the light of the mission was covered. Future changes to the XFS envisioned include changing the faulty calibration on the two low pressure transducers, changing the solenoid open
times and regulator delay times to account for depleted xenon supply, and changing the setpoint for plenum pressurization such that on average the flow rate is nominal.

Acknowledgements

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

We extend thanks to Jack Stocky the program manager of NSTAR for his support and to the XFS team members without whom the XFS would not have happened.

References