Design Models for Development of Helium-Carbon Sorption Coolers

C. Lindensmith
C. G. Paine
M. Ahart #
P. Bhandari
L. A. Wade

This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Present address: Princeton University, Princeton, NJ, USA
Designs for continuous cooling to 4--6 K

- Heat In: gas desorbed
- Gas storage: charcoal, metal hydride
- Heat Rejected: gas adsorbed
- Joule-Thomson expander (bi-directional)
- Heat Lift at low temperature
Implementation of continuous cooling

Single J-T with check-valves

Multiple bi-directional J-Ts

cold plate
Helium-Carbon cooler design model

model inputs
No. of compressor elements
cycle time
precooling temperature(s)
maximum compressor temperature
desorption and adsorption pressures
required cold plate temperature
required power lift
heat exchanger efficiency
materials properties of charcoal and container
allowable pressure drops in tubing
safety margins in pressure and temperature
heater electrical properties
length of J-T constriction

model outputs
charcoal mass required
optimized dimensions of compressor elements
container mass
required heat rejection at precooler
efficiency of system
total mass of compressor elements
required C-F mechanical configuration
diameter of J-T constriction
heat switch parameters (for Helium gas-gap)

Basis of design model:

- employs GasPak code from NIST, coupled to Excel spreadsheet to find enthalpy of Helium gas
- charcoal properties from Duband, fits to Dubinin sorption model
- either set of properties can be replaced by data in tabular or functional form
Proposed Design for NGST 2-stage sorption cooler

Metal Hydride/Hydrogen Compressors (Mounted on 270 K radiator)

Counterflow Heat Exchanger (CFHX)

CFHX ISIM Radiator (35 K)

Hydrogen Cold Plate (18 K)

Gas-Gap Heat Switch

Helium Compressors

CFHX

J-T J-T J-T

Helium Cold Plate (6 K)
Model predictions for NGST 2-stage system performance

He-Carbon performance from design models

H2–metal hydride performance from similar models and scaling of Planck coolers

A) The heat lift required at 6 K as a function of the number of detector arrays.
B) The total system mass and power as a function of the number of detector arrays.

Table 2. Cooler System Properties for Various 6 K Cooling Loads

<table>
<thead>
<tr>
<th>Heat Lift At 6 K (W)</th>
<th>Charcoal Power (W) (at 18 K)</th>
<th>Charcoal Sys Mass (kg)</th>
<th>Hydride Input Power (W) (at 270 K)</th>
<th>Hydride System Mass (kg)</th>
<th>Total System Power (W)</th>
<th>Total System Mass (kg)</th>
<th>Passive Cooling requirements (W) At 35 K</th>
<th>At 270 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.43</td>
<td>0.56</td>
<td>66.4</td>
<td>12</td>
<td>66.8</td>
<td>12.6</td>
<td>0.44</td>
<td>66.4</td>
</tr>
<tr>
<td>0.007</td>
<td>0.58</td>
<td>0.71</td>
<td>72.9</td>
<td>12.7</td>
<td>73.5</td>
<td>13.4</td>
<td>0.59</td>
<td>72.9</td>
</tr>
<tr>
<td>0.010</td>
<td>0.81</td>
<td>0.95</td>
<td>82.6</td>
<td>13.7</td>
<td>83.4</td>
<td>14.6</td>
<td>0.82</td>
<td>82.6</td>
</tr>
<tr>
<td>0.014</td>
<td>1.12</td>
<td>1.27</td>
<td>95.6</td>
<td>15.1</td>
<td>96.7</td>
<td>16.4</td>
<td>1.13</td>
<td>95.6</td>
</tr>
<tr>
<td>0.015</td>
<td>1.20</td>
<td>1.34</td>
<td>98.9</td>
<td>15.4</td>
<td>100.1</td>
<td>16.7</td>
<td>1.21</td>
<td>98.9</td>
</tr>
</tbody>
</table>