A Boundary Scan Test Vehicle for Direct Chip Attach (DCA) Testing

Heather Parsons
Saverio D’Agostino
Genji Arakaki
Jet Propulsion Laboratory

5/10/1999
Topics

Background: Direct Chip Attach

Test Methods

What is boundary scan and how does it work

How is it currently being used

Usefulness to others
Background: What is Direct Chip Attach?

Equivalent to Chip-On-Board

Bare die bonded directly to the printed wiring board

Wire bonded

Non-Hermetic Packaging

To validate an encapsulation or passivation technology for New Millenium Deep Space - 2 (DS-2) and other flight projects

5/10/1999
Background: DCA Objectives

To design a substrate that
- gives a realistic understanding of how the environment affects powered devices
- provides information about the reliability of passivation technology

- Span wide range of part types

- Testing
 - Fast
 - Automated
 - Repetitive
 - Log data
Test Methods

Daisy Chain
- simple for solder joints or connectors
- non-powered devices
- don’t know exactly what interconnect has failed

Boundary Scan
- IEEE Standard (JTAG)
 - Standardized
 - Commercially available
- powered devices
- digital test
- determine failure at interconnect level
 - short
 - open
Boundary Scan Chip
Board Design

Boundary Scan Devices

Memory Chip

Mosfet

SIR Patterns

Sandia Test Chip NAT01

Sandia Test Chip ATC 2.5

A to D Converters

U1

U2

U5

U4

U3

TDI

TDO

5/10/1999

Direct Chip Attach
5/10/1999
Devices on Board

Packaged Parts
- Boundary Scan Chips
- Resistors
- A to D Converters

Bare Die
- A Memory Chip
- Several Schottky Diodes
- MOSFETs (Both N and P Channel)
- Sandia Test Chips
 - ATC 2.5
 - NAT01
- SIR Patterns
Boundary Scan Test

- Diodes - Series connected with resistor
- Mosfets - N and P channel configured as inverters
- SIR Patterns - Voltage divider will show non-zero value if current flows
- ATC2.5 / NAT01 - A to D Converters will sense change in voltage divider
Test of Static Memory (SRAM) by Boundary Scan

- Boundary Scan used to write to SRAM
 - Boundary Scan Chip 1 feeds addresses
 - Boundary Scan Chip 1 feeds data inputs

- Boundary Scan used to read SRAM
 - Chip 1 feeds addresses
 - Chip 2 reads Data outputs

- Data shifted out - verified

5/10/1999
The Boundary Scan Test System

Asset
- Hardware Card
- Interface Pod
- Windows Software
The Boundary Scan Test System

Scan Path ATPG: Test results for entity dcabd3. This test detects:
- Stuck-at-0 on the TDI/TDO data path.
- Inoperative TCK.
- Inoperative TMS.
- Incorrect scan path length.

Pattern Is Constant 1

Step 1. Expect the value normally captured by the BYPASS/IDCODE registers.
No failures detected.
Step 2. Expect the pattern shifted through the BYPASS/IDCODE registers.
No failures detected.
Pattern Is Constant 0

Step 1. Expect the value normally captured by the BYPASS/IDCODE registers.
No failures detected.
Step 2. Expect the pattern shifted through the BYPASS/IDCODE registers.
No failures detected.
Pattern Is Constant 0110

Step 1. Expect the value normally captured by the BYPASS/IDCODE registers.
No failures detected.
Step 2. Expect the pattern shifted through the BYPASS/IDCODE registers.
No failures detected.
INFO MAX064: C:\ASSET23\DcaAsset\DCAbrd\Macros\Scanpath3.mac(247) Program ran successfully.

5/10/1999

- Uses Macros to program test
- Compares test data out to data expected
The Boundary Scan Test System

LabVIEW

- Logs time, date, and other relevant information when there is a failure
- Continuous testing

5/10/1999
Successfully able to test

diodes
mosfets
SRAM
Future Tasks

- LabVIEW up and running
- Continuous testing in thermal and HAST chambers
- Testing all different types of new Packaging technologies

5/10/1999
Boundary Scan use for DCA

- test at interconnect level
- automated testing that logs failures

Boundary Scan as a valuable resource to testing new technologies