
Reconfigurable Control for 
the  Formation Flying of Multiple  Spacecraft 

Mehran Mesbahi*and Fred Y. Hadaeght 
Jet Propulsion  Laboratory 

California  Institute of Technology 
4800 Oak Grove  Drive 

Pasadena, CA 91109-8099 
U.S.A. 

Abstract 

Several results  on the reconfigurable control  architec- 
ture for the formation flying of multiple spacecraft 
are presented.  In  this  direction, simple control laws 
are combined with logic-based switching to propose 
a hybrid  control  architecture for leader  reassignment, 
leader-following capturing,  and dealing with  control 
saturations. 
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1 Introduction 

Formation flying (FF) has been identified as  an  en- 
abling technology for many of the NASA's 21St cen- 
tury missions, among  them,  the Space Technology- 
3 (ST-3)  and  the  Terrestrial  Planet Finder (TPF). 
Formation flying involves flying a group of space- 
craft in a particular  pattern while maintaining precise 
(possibly time varying)  relative  position, velocity, at- 
titude,  and  angular velocity, with respect to each 
other [3], [6]. Since traditional spacecraft  control is 
often concerned with  measuring and maintaining the 
same  quantities for a single spacecraft  with respect 
to  an  inertial reference frame,  the analogous FF con- 
trol  and  estimation problems are often an order of 
magnitude  more challenging than those  encountered 
traditionally for a single spacecraft [l], [4], [8]. In 
order to make the FF control problems at  least  sim- 
ilar to the single spacecraft case, an  approach based 
on leader-following has been proposed by Wang and 
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Hadaegh [7]. The basic idea  in leader-following is 
to  designate a particular  frame (or multiple  frames) 
in the  formation  as  the reference frame(s) of inter- 
est  and  measure  and  control  the  states of the  rest 
of the formation  with  respect to them.  The  purpose 
of the present paper is to show that linear matrix 
inequalities (LMIs) [2] can  be combined with logic- 
based switching schemes to propose reconfigurable 
control  architecture for the  formation flying of mul- 
tiple  spacecraft. 

The outline of the  paper is as follows. In $2 the no- 
tation used in the  paper is presented. Simple control 
laws for the  formation flying control  are  then derived 
in $3 based on the leader-following concept.  In $4, 
$5, and $6, the control laws derived in $3 are com- 
bined with logic-based switching to propose a hybrid 
control  architecture for leader  reassignment,  leader- 
following capturing (defined subsequently),  and deal- 
ing with control saturations. 

2 Notation 

Formation flying consists of flying a group- of space- 
craft in a particular  pattern. To be able to express 
the time evolution of the formation  and design the 
corresponding  control  laws, it is convenient that a 
reference frame is attached  to each spacecraft. We 
shall always assume that these reference frames are 
induced from a dextral  set of three  orthonormal vec- 
tors. Let the  formation have n spacecraft labeled as 
1 , 2 , .  . . ,  n. Let Fi denote  the reference frame  at- 
tached to  the  i-th  spacecraft; 3' on the  other hand 
shall  designate the  inertial reference frame. For the 
inertia and the mass of the  i-th spacecraft we use I' 
and mi , respectively. The force and  torque  acting 
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Figure 1: Formation  Coordinates 

3 Simple  Control  Laws  for  Leader- 
following 

In  this section we go over some  simple  control laws 
for formation flying that  are derived based on the 
state feedback synthesis procedure which uses  LMIs 
as its building block. These  control  laws  can be used 
for the control of the  formation  pattern under two 
different  measurement  scenarios. First, we consider 
the  situation where inertial  measurements  are avail- 
able to  both  the  leader(s)  and  the follower(s); then 
we comment  on the case where the follower(s) mea- 
surements  are done with  respect to  its own moving 
reference frame. In all subsequent  sections, we say 
that i is the leader of j if 4 is an affine function of 
T' which is twice differentiable. 

upon i are  denoted by f '  and 7' ; for the mass nor- 3.1 ~ ~ ~ ~ ~ i ~ l  Reference name M ~ ~ ~ ~ ~ ~ -  
malized force we used ui := f ' .  The  time derivative ments m' 
with  respect to  3' shall  be  denoted by &; likewise, 

$ will be used for the  time derivative  with  respect 
to 3' . TG denotes  the position of the origin of 3' 
with  respect to 3 j  ; T' is the position of the origin of 
F' with  respect to 3' . The desired position of the 
origin of Fi with  respect to 3 j  shall  be  denoted by TY , and by T: when j = I. The velocity of the origin 
of 3' with  respect to 3 j  , the velocity of the origin 
of 3' with  respect to 3' , the desired velocity of the 
origin of 3' with  respect to Fj , and  the desired ve- 
locity of the origin of Fi with respect to F' , shall be 
denoted by vii , vi , vy , and v i  , respectively. The 
vector [T' vi I T  shall  be  referred to as  the  state of the 
i-th spacecraft and will be  denoted by xi . Similar 
notations  are used for the  attitude  and  the  angular 
velocity of 9 with  respect to 3 j  : and w i  are  the 
attitude  and .. the  angular velocity of 3' with respect 
to 3 j  and 4: and wb are  the desired angular veloc- 
ity and  attitude of 3' with  respect to 3 j  (refer to 
Figure 1). All other  notations  are  standard: 3" de- 
notes the real Euclidean space of dimension n; I l . l l o o  
and I I . I I  are used for the infinity norm  and the 2-norm 
for vectors and  matrices.  The cross product matrix 
induced by the vector x = [x1 2 2  x3IT is the  matrix, 

Let i be the leader of j during the  time  interval [to, t j ] .  
The desired position of j is thus expressed as, 

d ( t )  = T'(t) + h'j(t), t o  5 t 5 t j .  

The error expression for j is then simply, 

d ( t )  = T a ( t )  - d ( t )  = T i ( t )  - d ( t )  + h'j(t). 

Assuming that hG is twice differentiable  on [to,tr], 
the above expression can  be  differentiated twice with 
respect to  the inertial reference frame to obtain (re- 
calling that ui = f ) ,  

d2d(t)  d2hij(t) -= 
dt2 u'(t) - uqt> + ( 3 4  dt2 

By letting, 

one obtains, 

(3.3) 

(i.e., feedback linearization). The equation (3.3) can 
be expressed as, 



where z l ( t )  = d ( t ) ,  z2 ( t )  = q, and  the matrices i 2 ( t )  = - 2 z 3 ( t )  x z z ( t )  - (Ii)-’(Tj(t) 
Ai and Bj are defined as suggested by (3.4). - Z 3 ( t )  x IiZ3(t)) - Z3( t )  x ( Z 3 ( t )  x Z l ( t ) )  

thesis for leader-following is thus reduced to finding + (u’(t) - .j(t>> + dt2 , (3.10) 
the  term for iij using the following LMI, 23(t) = (I’)-’(~j(t)  - ~ 3 ( t )  X Iiz3(t)). (3.11) 

The  control design based on the  state feedback syn- d2hii(t) 

AjQ Q(Aj)T ’jY yT(Bj>T < 0, (3.5) Consider two distinct  situations. 
Q > 0, (3.6) 

1. j has  constant  angular velocity: Consider the 
and  let Kj = YQ-’ [Z]. Hence, given that i is the case where, 
leader of .i the  control law for j has  the  form, - - 

d2hu(t) 
dt2 

d ( t )  = Z 3 ( t )  x Iiz3(t), (3.12) 
?&t) = u’(t) + + Y&”,’(t), t o  5 t 5 t f .  

i.e., the  angular velocity of j during  the leader- 
Employing the above  control law by the follower  following remains constant.  The dynamical 
spacecraft j guarantees  that  the origin is the globally equations (3.9)-(3.10) can then  be  written  as, 
asymptotically  stable  equilibrium of the error func- 
tion ~ ( t ) ,  and thereby, d ( t )  --f d( t )  as t --f 00. .i-l(t) = z2(t), 

i 2 ( t )  = W&) + W 4 t )  + u’(t) - uj(t), 
3.2 Moving  Reference Frame Measure- 

ments 
where, 

We shall now briefly go over the  situation where the W1 = z3z: - 11z311i1, and W2 = - [ 2 x 3 ] .  
measurements  are  done in the moving frame  attached 
to  the follower spacecraft. Feedback linearization is Consider again the change of variable of the form 

d ( t )  = ui(t) + 4 + d ( t ) ;  then, 
d~hii  

then used to  reduce this case to  that considered in 
the previous  section. 

Again let i be the leader of j during the  time in- 
terval [ t o , t f ] .  Contrary  to  the case considered pre- 
viously, we would  like to  obtain  an expression which 
describes the  time evolution of d in Fj (as opposed 
to F1 ). Proceeding  from (3.1), one  has, Define the  matrices Aj and Bj as suggested 

Aj Bj - - 
above; we can now proceed to solve the LMI, 

AjQ + + BjY + YT(Bj)T < 0, (3.13) 
+J(t) x (d(t) x d ( t ) )  Q > 0,  (3.14) 

d2hij(t) = (u’(t) - uj(t)) + -- dt2 ’ (3.7) and  let, 

the  last  term on the right  hand side of (3.7) can of d2hij(t) 
course be  represented in Fj. 

d ( t )  = z?(t) + dt2 + YQ-’.’(t), t o  5 t 5 t i ;  

The  rate of change of the  angular velocity d with 
respect to Fj (or F1 ) is related to  the applied torque 
on the spacecraft via the Euler’s equation, 

note  that only the definition of the  matrix Aj 
has been modified from that used previously to 
reflect the fact that  the error  vector is now mea- * = (I‘)-’(d(t)  - d(t) x ( I ’ d ( t ) ) ) .  (3.8) 
sured in the moving coordinate  frame  attached 

d t  to  the follower. 

Let q ( t )  = d ( t ) ,  ~ ( t )  = 9, and Z g ( t )  = d(t). 2. j has  non-constant  angular velocity: If the  angu- 
The dynamics of j can thus be  represented as, lar velocity of j does not remain  constant  during 

the leader-following, then we can use feedback 
i l ( q  = Z 2 ( t ) ,  (3.9) linearization to linearize the dynamics in such a 



way that  the LMI approach above can still be 
adopted. For this  purpose  it suffices to  let, 

aj = -2z3(t)  x z2( t>  - (1')-'(4(t) 

- .Z3(t)  x I i z3( t ) )  - 23(t)(Z3(t)  x Zl(t)), (3.15) 

and let d ( t )  = ui(t) ~+ + d ( t )  + d ( t ) ;  as 
before the expression for iiJ(t) is found be solving 
an LMI. 

2hG t 

In both scenarios considered above, the control law 
for the leader spacecraft i can also be based on the 
state feedback synthesis. For this  purpose it suffices 

to let u'(t) = YQ-lz(t) + *- where the  matri- 
ces Y and Q are found  from the LMI (3.5)-(3.6) by 
letting, 

A i = [ :  i ]  , and B ' =  [ : I ]  ; 

however z is now simply ~ a ( t )  - ~ ~ ( t ) .  

4 Leadership Re-Assignment 

The designation of the  leader, aside from its asso- 
ciated  hardware  and  software  considerations  and  the 
required communication  protocol, is rather  arbitrary. 
It is thus of interest to consider a situation where the 
leader  assignments are  time varying, and  that any 
subset of the spacecraft  in the  formation can  assume 
the leadership role.' 

Suppose that  at a particular  instance of time, i 
is the  leader of j; in  this case the control law of $4 
(when inertial  measurements  are available) can  be 
implemented as, 

d 2 r $ ( t )  
d ( t )  = Kz' ( t )  + - dt2 ' 

d2hji(t) 
uj(t)  = K&t)  + u'( t )  + - 

dt2 ' 
where z i ( t )  is the  state error observed by i at time 
t .  Since hij(t) = -hji(t), when the leadership assign- 
ment is reversed and j is the leader of i, the control 
laws can be reconfigured as, 

d2 hji ( t )  
U ' ( t )  = K z ' ( t )  + Uj(t) - - dt2 ' 

d2&t) 
d ( t )  = Kzj( t )  + -* 

dt2 ' 
Leadership reassignment becomes specially relevant when 

one looks beyond ST-3 and TPF type space interferometry 
missions to the formation flying of large number of  spacecraft. 
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Figure 2: Switching for Leader  Reassignment 
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Figure 3: Leader-following capturing 

refer to Figure 2 

5 Leader-Following Capturing 

We consider a situation where a free  spacecraft is 
captured by a leader following scheme. Building on 
the  control laws developed in $4, the corresponding 
block diagram  representing the switching  control sys- 
tem  can  be  drawn  as  in  Figure 3. Note that we have 
considered the  situation where the isolated  spacecraft 
is not assigned as a leader; if this is in fact  the case, 
then  its  control law  will not be changed  from when 
the spacecraft was free. However, in  this  latter  situa- 
tion,  the control law for  the new followers of the new 
leader spacecraft changes according to  the procedure 
presented in $5. 

6 Control Saturations 
We  now examine the scenario where the  j-th space- 
craft, j, following i in a leader-following scheme, is 



also avoiding control  saturation by switching between 
two or more controllers. In order  to simplify the pre- 
sentation, we shall  assume in the rest of this sec- 

tion that .4 = 0, to I t 5 t f .  Let m denote 
the 2-norm of the maximum allowable mass  normal- 
ized force on  each  spacecraft  in the formation; that 
is, we require that, Iluj(t)ll 5 m, to 5 t I t f .  
Now since d ( t )  = Y Q - l z ( t )  + d ( t )  we require that, 
Ilui(t) + YQ"z(t)ll 5 m, to I t 5 t f .  Note that 
although j has  no  prior knowledge about  the values 
of ui it  has to choose Q and Y such that  the con- 
trol  constraint  is  satisfied.  To cope with  this lack 
of knowledge on  the values of ui(t), we proceed to 
present a controller  switching mechanism which sat- 
isfies the control  constraint,  in face of the lack of 
a priori knowledge of the values of ui( t )  by the fol- 
lower spacecraft. The only assumption which is re- 
quired for the proposed  approach to work is that, 
\lu'(t)ll < m, t o  5 t 5 t f .  Let us start with the 
stronger  requirement, IIYQ-'z(t)ll 5 m - Ilu'(t)ll = 
mi ( t ) ,  to  5 t 5 t f  in  order to  satisfy the control 
constraint. Let Eto = { z  : z Qto z 5 l}, where Qto is 
a positive  definite matrix which is chosen such that 
z ( 0 )  belongs to  Eto by solving an LMI, in conjunction 
with, 

d2hji t 

T -1 

AQt, + QtoA + BY,o + U,, B < 0. (6.16) T T  

For small values of S t ,  if &to) = d(t0 + S t )  for t E 
[ to ,   t o  + S t ]  and we use the controller K t ,  = yt0Qt,l, 
then  it would be the case that t ( t 0  + st)  E &to. In 
fact, if &t) remains constant,  then z ( t )  E &to for all 
t E [ t o , t j ] .  In  this  situation, in  order to guarantee 
that  the  saturation  constraint is  not  violated, we can 
augment the above LMIs with  another  one, 

since [a] maxt>o - \\u'(t)ll = m ~ t > o  IIYtOQG1z(t)ll I 
m a x z ~ ~ ~ ~  IIytoQG*~(~)ll  I Xm.m(Q, Y t o Y t o Q t o  

112 T -1/2)  

The problem is that in  general, one cannot  guar- 
antee  that z(t0 + S t )  E Eto,  nor does the above 
discussion addresses the  situation where m'(t) does 
not remain constant. We are  thus led to incorpo- 
rate logic-based switching  in  conjunction  with above 
LMIs to address  both of these scenarios. Let mi := 
mintE[toltl] Ilmi(t)ll; solve the semi-definite program, 

Figure 4: Ellipsoids for  Control Switching 

AQto + QtoAT + BY,, + u,, T T  B < a ~ ,  
&to > 0, a < 0, 

We then proceed from time to and considered the 
various scenarios which can  occur at  time to + 6 t :  

1. z(to+St) E &to and mi(t) has  remained  constant. 

2. z(to + S t )  E Eto, however mi has changed over 
the interval [to,  to + st].  

3. z(to + st) $! Et,, whether or not mi has remained 
constant. 

For each scenario above, we were able to show that 
an LMI can be solved to address the control  satura- 
tion problem [ 5 ] .  Moreover, the resulting proposed 
switching mechanism results in a hybrid dynamicd 
system for which the origin is the globally asymptot- 
ically stable equilibrium point. 

7 Conclusion 

Several reconfigurable control  strategies for the for- 
mation flying of multiple  spacecraft were presented. 
In this  direction, it was demonstrated  that by em- 
ploying feedback linearization and linear matrix 
inequalities, in conjunction with simple switching 
mechanisms, various formation  control  and  manage- 
ment issues could be addressed. 
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