Presented to the
Space Parts
Working Group

Space
Parts Consortium

JPL Institutional Parts Program

Kevin P. Clark
Manager, Electronic Parts
Engineering Office
The Context — Faster–Better–Cheaper

- Past environment characterized by
 - Flagship missions that smaller missions could benefit from
 - Overage of long lead, high reliability parts available
 - Parts procurement contracts available for add-on buys
 - Preferred parts list developed and parts qualified
 - Large equipment items funded by flagship mission
 - Maintenance of core part support capabilities partially subsidized by flagship missions
 - Device evaluations, methodologies, qualifications
 - Part information systems, etc.
 - Substantial support to parts industry infrastructure by DOD and NASA
 - Reliability engineering
 - Radiation hardening and testing
The Context — Faster–Better–Cheaper

- Need to adapt to new environment
 - No flagship mission
 - Many BFC missions that must work synergistically
 - Short development cycles incompatible with long lead part procurements
 - Many, smaller projects with
 - No investment in parts engineering core capabilities
 - No sustaining parts engineering support
 - Part Delivery Schedules More Constrained
 - Flight parts: 12-24 months (past); > 3-6 months (today)
The Context — Faster–Better–Cheaper

- Need to adapt to new environment (Continued)
 - Parts industry infrastructure driven by commercial needs
 - Decreased radiation hardening and testing
 - Cancellation of Mil specs
 - Substantial decrease in “Class S” parts
 - Part Process Resource Sharply Diminished
 - Typical parts program cost (as % of total project cost) reduced
 - Less parts engineering, evaluation, qualification, acquisition labor resources
 - Industrial partnerships
 - less visibility, more trust, less oversight
The Context — Faster–Better–Cheaper

- Need to adapt to new environment (Continued)
 - Industry Significantly Changed
 - COTS, diminishing sources (mil-spec parts), improving commercial quality, less knowledge and control of parts suppliers process changes
 - Technology Issues
 - Increased complexity, radiation susceptibility
 - Rapidly accelerating part obsolescence
 - Transition to low voltage and low power technology, and need for low temperature performance
 - Many New Initiatives
 - ISO9000 Certification
 - Single-process initiative, etc.
The Challenge — Faster–Better–Cheaper

- Given: Flight mission and instrument development processes are being reengineered
 Stretch goal — Reduce the start-to-launch cycle time by 1/2 ...

Example —
Reduce JPL’s Mars Pathfinder cycle time from 36 months to 18 months

... and reduce development costs by 1/3 ...

... while not adding risk or reducing quality

- Challenge: Reduce total parts life cycle cost
Solution - Faster, Better, Cheaper Parts Program

- **Faster**
 - Have parts inventory
 - Real (parts in Flight Stores or available from partners)
 - Virtual (open orders or other contracts in place)

- **Better**
 - Less risk by having many parts on hand
 - Use parts with known pedigree, history, characteristics, etc.
 - Increased access to newer technology

- **Cheaper**
 - Share cost of acquisition, evaluation, parts engineering, and problem resolution
 - Have information on problems, application issues, etc. “up front” to avoid problems
Space Parts Consortium (SPC) Concept

- **Phase I**
 - Provide venue to increase involvement between aerospace organizations to leverage resources
 - Shared Activities
 - Share cost of acquisition, evaluation, parts engineering, and problem resolution
 - Technical Information Interchange
 - Allow limited access to portions of each members parts information data base
 - Limited to Components, Quality, and Reliability information not Application information
 - Allow for informal communication between consortium members parts specialists or engineers
Space Parts Consortium Concept

• Phase II
 – Increase involvement with our suppliers to emphasize inventory and supply chain management to lower costs, speed delivery, and obtain improved quality and reliability through
Initial Meeting Objectives

- Introduce the Space Parts Consortium Concept
- Engage participants in the further definition and implementation of the SPC
- Solicit participants EEE parts
 - Interests
 - Current Parts Evaluation Activities
 - Constraints (on SPC participation or information sharing)
- Initial implementation of selected activities
 - Initiate shared evaluation efforts
 - Initiate selected data sharing
- Devise Implementation Action Plan for follow-on activities
Many Issues / Concerns

- Competitiveness
- Fairness
- Liability
- ITAR
- Is this just another "Initiative"?
- Why not use existing venues?
 - DSCC
 - STACK
 - GIDEP
 - G12
What Do We Want From You?

- Be willing to share (within constraints imposed by your organization)
 - Parts Information
 - Evaluation and Test Activities and the results
We Are Seeking Other SPC Opportunities

- We currently are focusing on opportunities regarding EEE parts;
 - Technical information exchange
 - Cooperative Testing
- However, we welcome expansion to any other topics of interest to you such as
 - Residual inventory
 - Supplier Agreements
 - Links to your materiel-availability databases
- We welcome your ideas on other ways to make parts programs Faster, Better, Cheaper

Kevin.p.clark@jpl.nasa.gov
• Backup Material (SPC)
The Context — Faster–Better–Cheaper

- Current Project customers require more support than past
 - Need to utilize more new technology to accomplish advanced missions within tight constraints
 - Risk management/balancing
 - Decrease in reliability, radiation and application margins
 - Industrial partners have leaner contracts than past
 - Smaller projects can’t afford independent parts assurance activities
 - Advanced technology brings new issues (e.g., Radiation, failure mechanism identification, new materials reliability issues, testability, complexity, etc.)
 - COTS parts bring new issues (e.g., intra-lot variability, decreased traceability, unknowns, not driven by space/DOD requirements)
The Context — Faster—Better—Cheaper

- Current Project customers require *more* support than past (Continued)
 - Unlike the past mil-parts/rad-hard parts are not readily available and need more attention
 - Mass constraints lead to decreased use of redundancy
 - Smaller, faster, leaner, independent and fragmented Projects
 - Increased mission competition and NASA direction drives cost \(\sim 1/10x \) which forces leaner Projects
 - Decrease in development time by a factor of 2 drives need for
 - pre-project or very early long lead time part procurement initiation
 - early and accurate parts information
 - getting it right the first time (no time for rework)