Introduction

Techniques to generate cold atom beams are of great interest in a variety of applications, from atomic frequency standards and atom optics to experimental studies of Bose-Einstein condensation. Cold atom beams have been produced by slowing thermal atomic beams using the Zeeman-slowing technique [1] or chirped lasers [2], or using laser-cooling techniques to extract a slow atomic beam from the background gas in a low-pressure vapor cell. These laser-cooling techniques include “atomic funnels” or two-dimensional magneto-optical traps [3–5], as well as a variation of the conventional vapor cell magneto-optical trap called the “low-velocity intense source” (LVIS) [6].

Variations of the LVIS have been realized with unique trap geometries such as conical [7] or pyramidal mirror traps [8]. The present work implements a simple and robust design based on the pyramidal trap geometry (Fig. 1) and allows use of a single large diameter (≤20 cm) laser beam to obtain large capture rates of atoms from the background vapor. The four 45° mirrors are truncated just before the apex of the pyramid, and the 1 cm² region at the center of the incident laser beam is retro-reflected by a λ/4 plate with a high-reflectance gold coating on the second surface. A small (1 mm diameter) hole in this retro-optic forms an extraction column for the atoms while maintaining a low conductance between the source region and an adjacent UHV chamber.
The characterization of this large pyramidal LVIS will be reported, including an investigation of scaling to very large (≥10 cm) high power (~1 W) laser beams which should allow an improvement by a factor of 2–3 in beam flux over previous reports [6]. An atomic beam source which employs Ioffe-Pritchard coils and the same optical geometry to provide transverse two-dimensional confinement within a three-dimensional optical molasses [5] is also being implemented and will be described for comparison.
Low Velocity Intense Source

LVIS

P-LVIS

- \(v_z = 14 \pm 2.7 \text{ m/s} \)
- flux: \(10^9 - 10^{10} \text{ atoms/s} \)
- divergence: 5 mrad (~20 \(\mu \text{K} \))
- brightness: \(5 \times 10^{12} \text{ atoms/s sr} \)
P-LVIS chamber and external coils.

Pyramidal mirror assembly.
Fluorescence image of trapped Cs atoms in pyramidal MOT.
Atomic beam detection
Low Velocity Intense Source:
Further work & applications

Beam characterization
- Beam flux, longitudinal velocity & divergence ...
- 2D-MOT vs. LVIS geometry* — optimize flux & brightness
- Loading efficiency into UHV MOT, optical molasses

Future applications
- Evaporative cooling & BEC
- Load optical molasses from beam to enhance cold atom source for clocks

References