JPL

The Matpar Server on the HP Exemplar
porelel aw}auﬁn(.{
MATLAR
Paul Springer
High Performance Computing Group
Jet Propulsion Laboratory
California Institute of Technology

pls@volcanoes.jpl.nasa.gov
http://www-hpc.jpl.nasa.gov/PS/MATPAR



JPL

Matpar Introduction

Background

Matpar Architecture
Matpar Design
Current Status
PVM vs MPI
Matpar Timings
Conclusions

Future Work




JPBL

Background

Original request from Space Interferometry
Mission (SIM) design engineers

e Matlab too slow on large problems
(2000 x 2000 size matrices)

e Many jobs had to be run overnight

Next Generation Space Telescope (NGST)
needs even greater capability

* Optical design for segmented mirror
e May use 100,000 x 1,000 size matrices

Work begun in early 1996 on parallel
extensions to Matlab, called Matpar




JPL

Matpar Architecture

Client

Matlab

Matpar |
extensions a1

Sun UltraSparc

Server

Data & comman

\ 1

Support Software;
ScaLAPACK
PBLAS
BLAS
BLACS
LAPACK

Parallel Computer




JPL

Current Status (1.1 Release)

Functionality

e Matrix-matrix addition, subtraction, multiplication: p_add(A,B),
p_sub(A,B), p_mult(A,B)

 Scalar multiplication: p_smult(s,A)

e Identity matrix generation: p_eye(m,n)

e Inverse, pseudo inverse: p_inv(A), p_pinv(A)

e SVD: p_svd(A)

e Calculate A * Al p_multtrans(A)

e Traceof A*A': p_trace(A,1)

* QR factorization: p_qr(A)

e LU factorization: p_lu(A)

e Solve A*X = B: p_solve(A,B)

e Frequency response calculations: p_freqresp(A,B,C,D,w)
e Bode plot calculations: p_bode(A,B,C,D,w)

* Select computer and node count: p_config(computer, node count)
» Persistence: p_persist(A,1)




JPL

Matpar Design

Only certain operations parallelized

Simple Matlab style function calls

* B=qr(A) becomes B=p_qr(A)
* C=A*B becomes C=p_mult(A,B)

Calls can be made seamlessly

Calls invoke .m and .mex files

e Matlab standard method of extending the language

Compatibility with MATLAB versions 4 and 5



JPL

Client/Server Details

One MEX file for each parallel routine

o All MEX files call single shared object module
¢ All client code written in C

Matpar client code uses PVM to initiate server session on MPP

* Server code is object oriented, written in C++

e MPP node 0 is “coordinator” node and communicates to client

e Coordinator node distributes client data to other MPP nodes

e Coordinator node collects result data and sends to client

e Results can be made persistent for one operation, or more permanently
e Matrices larger than 512 x 512 are sent as separate PVM messages

e Server session remains active until user quits MATLAB




JPL

Client/Server Communication Protocol: Requests

Command (int)
Command data: count, data,... (ints)
e useful for hints, auxiliary command data, etc.
Data types: count, type,... (ints)
e IMDBLBLK--double precision matrix sent block by block
e IMDBLDIAG--double precision diagonal matrix
e IMDBLREPMAT-- double precision matrix to be replicated on each node
e REFMAT--reference number for persistent matrix
e IMDBL--double precision scalar
* etc.
Data: count, data.,...

e IMDBLBLK--matrix row count, matrix col count, block row count, block col
count, row blocking factor, col blocking factor, data

o IMDBLMAT--row count, col count, data
o REFMAT--reference number



JPL

Client/Server Communication Protocol: Results

Data: count, type, data, type, data, ...
e IMDBL--double precision scalar
¢ IMDBLMAT-- double precision matrix
e IMDBLCMAT-- double precision matrix with complex data
e IMDBLBLK-- double precision matrix returned block by block
e REFMATSIZE--size of persistent matrix
* IMDBLDIAG-- double precision diagonal matrix




JPL

Block Cyclic Data Distribution

0 1

5 x 5 matrix partitioned into Matrix distribution onto
2 x 2 blocks 2 x 2 node grid




JPL

Matpar Server Objects: Matrices

Derived classes
e CompMatrix--complex matrix
e BCompMatrix--banded complex matrix
e RDMatrix--replicated diagonal matrix
Class data
e matrix layout
e row and col counts
Methods
e constructors & destructors
e replication, collection & distribution
e ScaLAPACK operations
* assignment, equality testing, filling




JPL

Matpar Server Objects: Request

Class data
e command
* input data arrays
e result data
¢ error information
Methods
* high level functional calls
e argument retrieval functions
* persistent matrix creation and retrieval
e result creation routines




JPL

Matpar Server Objects: Input Data Items

Abstract base class to hold each data object
Derived classes

e ImBlkData--immediate block data

¢ ImDblData--double precision scalar

e ImIntData--integer scalar

¢ ImMatData--double precision matrix

¢ ImRepMatData--replicated real matrix

¢ ImRepMatIData--imaginary part of ImRepMatData

* ImFileData--data from disk file

¢ RefMatData--reference to persistent matrix
Class data

* metadata, pointers to data
Methods

* build()

* pack() & unpack() (PVM)




JPL

Matpar Server Objects: Output Data Items

Abstract base class to hold each data object
Derived classes

e DstIntData--integer scalar result

¢ DstDblData--double precision scalar result

¢ DstMatData--matrix result

* DstDiagData--diagonal matrix result
Class data

* metadata

¢ pointers to data
Methods

* output() (debugging)

¢ pack() (PVM)

* packBlock() (PVM)




JPL

Matpar Server Objects: Matrix Block Iterator

Modeled after C++ Standard Template Library iterators
Encapsulates data layout information for this node
Allows programmer to efficiently access contiguous data within block
Class data
e global column # of first column of current iterator block
e global row # of first row of current iterator block
* private data regarding block layout
Methods
* ++ operator iterates through matrix blocks on this node
o getLastBlkCol()--returns global column # of last column of current block
e getLastBlkRow()--returns global row # of last row of current block




JPL

PVM vs MP1

Job control requirements
 Client initiates server transparently to user

e This generally involves starting a script on server, that goes through server’s
queuing system to start pvimd

e At run time, user decides which of many possible servers to use
MPI limitations
e LAM MPI does not work on our system
“recon” reads a blank system table

e Other versions of MPI do not support dynamic processes

e From MPI-2 spec, p. 86: “If the program named in command does not call
MPI_INIT, but instead forks a process that calls MPI_INIT, the results are
undefined.”

* p.83: “Complex interaction of an MPI application with its runtime
environment should be done through ... pvm_addhosts...”

e Workarounds to MPI limitations are cumbersome




JPL

Timings--Matrix inversion

Matrix Inversion Timings
10000
1000
}
a 100 |
< —&— Sun f
9 | —@— CSPP-16 nodes
e ; 3
10
’
‘ 0.1 : = =
128 x 128 256 x 256 512 x 512 1024 x 1024 2048 x 2048
Matrix size




JPL

Conclusions

Applying parallelism to MATLAB can speed solutions of large problems
The client/server approach Matpar uses provides ease of use and good speed

For O(n?) calculations on large problems, Matpar is faster than MATLAB on a Sun
UltraSparc

* When data transfer rates are included, crossover point is with 512 x 512
matrices

* When no large data transfers are needed (eg. data is persistent), Matpar is
faster for even smaller matrices




J4PL

Future Matpar Work

Complete release of version 1.1

Port to MPI

Completely handle complex matrices

Update to use ScaLAPACK 1.5 (matrix redistribution)

Do more timings to characterize performance

* How to determine best block size?
* How to determine ideal number of processors?



JPLU

Acknowledgments

The work described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology under a contract with the National Aeronautics and Space Administration.

Part of the research reported here was performed using the HP SPP-2000 operated by the Center for Advanced
Computing Research at Caltech; access to this facility was provided by Caltech.




