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Background

Original request from Space Interferometry
Mission (SIM) design engineers

e Matlab too slow on large problems
(2000 x 2000 size matrices)

e Many jobs had to be run overnight

Next Generation Space Telescope (NGST)
needs even greater capability

* Optical design for segmented mirror
e May use 100,000 x 1,000 size matrices

Work begun in early 1996 on parallel
extensions to Matlab, called Matpar
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Matpar Architecture
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Current Status (1.1 Release)

Functionality

e Matrix-matrix addition, subtraction, multiplication: p_add(A,B),
p_sub(A,B), p_mult(A,B)

 Scalar multiplication: p_smult(s,A)

e Identity matrix generation: p_eye(m,n)

e Inverse, pseudo inverse: p_inv(A), p_pinv(A)

e SVD: p_svd(A)

e Calculate A * Al p_multtrans(A)

e Traceof A*A': p_trace(A,1)

* QR factorization: p_qr(A)

e LU factorization: p_lu(A)

e Solve A*X = B: p_solve(A,B)

e Frequency response calculations: p_freqresp(A,B,C,D,w)
e Bode plot calculations: p_bode(A,B,C,D,w)

* Select computer and node count: p_config(computer, node count)
» Persistence: p_persist(A,1)




JPL

Matpar Design

Only certain operations parallelized

Simple Matlab style function calls

* B=qr(A) becomes B=p_qr(A)
* C=A*B becomes C=p_mult(A,B)

Calls can be made seamlessly

Calls invoke .m and .mex files

e Matlab standard method of extending the language

Compatibility with MATLAB versions 4 and 5
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Client/Server Details

One MEX file for each parallel routine

o All MEX files call single shared object module
¢ All client code written in C

Matpar client code uses PVM to initiate server session on MPP

* Server code is object oriented, written in C++

e MPP node 0 is “coordinator” node and communicates to client

e Coordinator node distributes client data to other MPP nodes

e Coordinator node collects result data and sends to client

e Results can be made persistent for one operation, or more permanently
e Matrices larger than 512 x 512 are sent as separate PVM messages

e Server session remains active until user quits MATLAB
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Client/Server Communication Protocol: Requests

Command (int)
Command data: count, data,... (ints)
e useful for hints, auxiliary command data, etc.
Data types: count, type,... (ints)
e IMDBLBLK--double precision matrix sent block by block
e IMDBLDIAG--double precision diagonal matrix
e IMDBLREPMAT-- double precision matrix to be replicated on each node
e REFMAT--reference number for persistent matrix
e IMDBL--double precision scalar
* etc.
Data: count, data.,...

e IMDBLBLK--matrix row count, matrix col count, block row count, block col
count, row blocking factor, col blocking factor, data

o IMDBLMAT--row count, col count, data
o REFMAT--reference number
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Client/Server Communication Protocol: Results

Data: count, type, data, type, data, ...
e IMDBL--double precision scalar
¢ IMDBLMAT-- double precision matrix
e IMDBLCMAT-- double precision matrix with complex data
e IMDBLBLK-- double precision matrix returned block by block
e REFMATSIZE--size of persistent matrix
* IMDBLDIAG-- double precision diagonal matrix
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Block Cyclic Data Distribution

0 1

5 x 5 matrix partitioned into Matrix distribution onto
2 x 2 blocks 2 x 2 node grid
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Matpar Server Objects: Matrices

Derived classes
e CompMatrix--complex matrix
e BCompMatrix--banded complex matrix
e RDMatrix--replicated diagonal matrix
Class data
e matrix layout
e row and col counts
Methods
e constructors & destructors
e replication, collection & distribution
e ScaLAPACK operations
* assignment, equality testing, filling
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Matpar Server Objects: Request

Class data
e command
* input data arrays
e result data
¢ error information
Methods
* high level functional calls
e argument retrieval functions
* persistent matrix creation and retrieval
e result creation routines
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Matpar Server Objects: Input Data Items

Abstract base class to hold each data object
Derived classes

e ImBlkData--immediate block data

¢ ImDblData--double precision scalar

e ImIntData--integer scalar

¢ ImMatData--double precision matrix

¢ ImRepMatData--replicated real matrix

¢ ImRepMatIData--imaginary part of ImRepMatData

* ImFileData--data from disk file

¢ RefMatData--reference to persistent matrix
Class data

* metadata, pointers to data
Methods

* build()

* pack() & unpack() (PVM)
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Matpar Server Objects: Output Data Items

Abstract base class to hold each data object
Derived classes

e DstIntData--integer scalar result

¢ DstDblData--double precision scalar result

¢ DstMatData--matrix result

* DstDiagData--diagonal matrix result
Class data

* metadata

¢ pointers to data
Methods

* output() (debugging)

¢ pack() (PVM)

* packBlock() (PVM)
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Matpar Server Objects: Matrix Block Iterator

Modeled after C++ Standard Template Library iterators
Encapsulates data layout information for this node
Allows programmer to efficiently access contiguous data within block
Class data
e global column # of first column of current iterator block
e global row # of first row of current iterator block
* private data regarding block layout
Methods
* ++ operator iterates through matrix blocks on this node
o getLastBlkCol()--returns global column # of last column of current block
e getLastBlkRow()--returns global row # of last row of current block
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PVM vs MP1

Job control requirements
 Client initiates server transparently to user

e This generally involves starting a script on server, that goes through server’s
queuing system to start pvimd

e At run time, user decides which of many possible servers to use
MPI limitations
e LAM MPI does not work on our system
“recon” reads a blank system table

e Other versions of MPI do not support dynamic processes

e From MPI-2 spec, p. 86: “If the program named in command does not call
MPI_INIT, but instead forks a process that calls MPI_INIT, the results are
undefined.”

* p.83: “Complex interaction of an MPI application with its runtime
environment should be done through ... pvm_addhosts...”

e Workarounds to MPI limitations are cumbersome
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Timings--Matrix inversion

Matrix Inversion Timings
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Conclusions

Applying parallelism to MATLAB can speed solutions of large problems
The client/server approach Matpar uses provides ease of use and good speed

For O(n?) calculations on large problems, Matpar is faster than MATLAB on a Sun
UltraSparc

* When data transfer rates are included, crossover point is with 512 x 512
matrices

* When no large data transfers are needed (eg. data is persistent), Matpar is
faster for even smaller matrices
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Future Matpar Work

Complete release of version 1.1

Port to MPI

Completely handle complex matrices

Update to use ScaLAPACK 1.5 (matrix redistribution)

Do more timings to characterize performance

* How to determine best block size?
* How to determine ideal number of processors?
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