Magnetic percolation and giant spontaneous Hall effect in La_{1-x}A_xCoO_3 (A = Ca, Sr, 0.1 \leq x \leq 0.5)

N.-C. Yeh, A. V. Samoilov, C. C. Fu, G. Beach (Department of Physics, California Institute of Technology), R. P. Vasquez (Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109)

The spontaneous Hall effect and magnetoresistance (ΔR_H) of La_{1-x}A_xCoO_3 (A = Ca, Sr) are investigated as a function of the doping level x. We find that the Hall resistivity ρ_{xy} of the ferromagnetic cobaltites at $T < T_{Curie}$ is proportional to the magnetization M of the sample, and that for both La_{1-x}Ca_xCoO_3 and La_{1-x}Sr_xCoO_3, the spontaneous Hall coefficient R_s (equiv ρ_{xy}/M) is a strong function of the temperature T and the doping level, reaching maximum slightly below T_{Curie} for each doping level, and achieving the largest magnitude near the magnetic percolation threshold x \sim 0.2. In the case of La_{0.8}Ca_{0.2}CoO_3, we obtain a record value of R_s 'approx 1400 x 10^{-9} m^2/A$, exceeding all spontaneous Hall coefficients of known single-phased ferromagnets. In contrast, the longitudinal resistivity of these cobaltites decreases monotonically with increasing magnetic field for all samples, except La_{0.8}Ca_{0.2}CoO_3 that exhibits non-monotonic dependence. The giant spontaneous Hall effect may be attributed to the enhanced spin fluctuations near T_{Curie}, and the strong spin-orbit scattering from percolating high-spin Co^{3+} - Co^{4+} conducting clusters in a low-spin Co^{III} non-conducting matrix. Possible correlation between ΔR_H and ρ_{xy} will be discussed.