NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost.

The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcements (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure.

To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space environment. This approach is not needed for all technologies, but it is usually essential to validate advanced system architectures or new measurement concepts. The NMP has recently revised its processes for defining candidate validation flights, and selecting technologies for these flights. The NMP now employs integrated project formulation teams, which include scientists, technologists, and mission planners, to incorporate technology suites into candidate validation flights. These teams develop competing concepts, which can be rigorously evaluated prior to selection for flight. The technology providers for each concept are selected through an open, competitive, process during the project formulation phase. If their concept is selected for flight, they are incorporated into the Project Implementation Team, which develops, integrates, tests, launches, and operates the technology validation flight. Throughout the project implementation phase, the Implementation Team will document and disseminate their validation results to facilitate the infusion of their validated technologies into future OSS and OES science missions.

The NMP has successfully launched its first two Deep Space flights for the OSS, and is currently implementing its first two Earth Orbiting flights for the OES.
and OES flights are currently being defined. Even though these flights are focused on specific Space Science and Earth Science themes, they are designed to validate a range of technologies that could benefit both enterprises, including advanced propulsion, communications, autonomous operations and navigation, multifunctional structures, micro-electronics, and advanced instruments. Specific examples of these technologies will be provided in our presentation.

The processes developed by the NMP also provide benefits across the Space and Earth Science enterprises. In particular, the extensive, nation-wide technology infrastructure developed by the NMP enhances the access to breakthrough technologies for both enterprises. The database of validated technologies being developed as part of the NMP technology infusion strategy should facilitate both future missions in the Enterprise Strategic Plans, and future Principal Investigator-led missions in the Earth System Science Pathfinder, Discovery, and Explorer Programs. To exploit these capabilities, validated NMP technologies are being referenced in the Announcements of Opportunity for these programs.

The NMP is currently evolving to address the changing environment in OSS and OES. Efforts to further reduce the cost and increase the frequency of NMP flights are being pursued to optimize the cost effectiveness of the technology validation activities. We are also working to enhance the coordination between NMP validation flights and other technology development efforts with NASA's cross-enterprise technology programs. Finally, NMP processes are being revised to make them more accessible to the science and technology communities, and to make greater use of open, peer-reviewed competitions for their participation.
NEW MILLENNIUM PROGRAM

Serving Earth and Space Sciences

Fuk Li

Jet Propulsion Laboratory
California Institute of Technology

March 18, 1999
Ambitious Plans

Office of Earth Science
- EOS Post 2002
- Landsat Follow-on
- NPOES
- Advanced Geostationary
- ESSP

Office of Space Sciences
- Mars Exploration
- Outer Planets
- Discovery
- Solar Terrestrial Probes
- UNEE/SMEX/MIDEX
- Gravity Probe B/LISA
- Next Generation Space Telescope
- Space interferometry Mission/Terrestrial Planet Finder
Advanced Technologies:
Essential to Achieve OES and OSS Objectives

Science Missions

Impediments to Rapid Technology Infusion:
- Lack of flight heritage
 - real or perceived risks
 - cost
 - schedule
 - performance
- Little visibility to mission planners
 - capabilities poorly understood
 - A complete paradigm shift is needed to fully exploit some technologies
Cross-Enterprise Technology Thrust Areas

Office of Earth Science
The New Millennium Program

A cross-Enterprise program to identify and flight validate breakthrough technologies that will significantly benefit future Space Science and Earth Science missions

- Breakthrough technologies
 - Enable new capabilities to meet Earth and Space Science needs
 - Reduce costs of future missions

- Flight validation
 - mitigates risks to first users
 - enables rapid technology infusion into future missions
Common Processes for Earth & Space Sciences Programs

- Identification of Needs
- Identification of Tech.
- Project Formulation
- Technology Selection
- Project Implementation & Tech Validation
- Technology Infusion

Needs & Opportunities
Flight Project Formulation Process
Technology Validation and Infusion

Project Implementation
- Implementation plan
- Development and assessment plan
- Integration of technology into the system
- Execution of technology implementation plan
- Assessment of models and data
- Evaluation of technology
Validation Flights Launch Schedule

<table>
<thead>
<tr>
<th>FY</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1</td>
<td></td>
<td>▼ 10/98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS2</td>
<td></td>
<td>▼ 01/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO1</td>
<td></td>
<td>▼ 12/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▼ 03/01</td>
<td></td>
</tr>
<tr>
<td>ST3 target launch window</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▼ 09/03</td>
<td></td>
</tr>
<tr>
<td>ST4 target launch date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▼ 04/03</td>
<td></td>
</tr>
<tr>
<td>Potential Small ST5 mission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential EO3 / EO4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://nmp.jpl.nasa.gov/
Deep Space One: Asteroid Flyby

- Validate Technologies for Rapid Access in Deep Space Exploration

Advanced Solar Concentrator Array
Able Engineering Inc, BMDO, Entech, JPL, Lewis Research Center, & Tecstar

Miniature Integrated Camera Spectrometer
Boston U, JPL, Rockwell, SSG, Inc., USGS, & U of AZ

Autonomy Remote Agent Architecture
Ames Research Center Carnegie Mellon U & JPL

NSTAR Ion Propulsion System
Hughes, JPL, Lewis Research Center, MSFC, Moog Inc., Physical Science & Spectrum Astro

Multifunctional Structures
Air Force Phillips Lab & Lockheed Martin

Spacecraft Spectrum Astro, JPL

Small Deep Space Transponder
JPL & Motorola

Plasma Experiment for Planetary Exploration
SwRI & Los Alamos National Lab

Autonomous Onboard Optical Navigation
JPL

Ka-Band Solid State Power Amplifier
Lockheed Martin
DS1 Technologies and Applications

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
<th>Potential Earth Science Application/Benefit</th>
<th>Potential Space Science Application/Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Propulsion Engine</td>
<td>• save a factor of 2-3 in flight time while significantly increasing launch margin</td>
<td>• station keeping</td>
<td>• primary propulsion & station keeping</td>
</tr>
<tr>
<td>Solar Concentrator Array</td>
<td>• provides a 7:1 solar concentration factor; offers significant array cost reduction due to</td>
<td>• power generation</td>
<td>• power generation</td>
</tr>
<tr>
<td>Ka-band Solid State Power Amplifier</td>
<td>the reduced (1/7) quantity of cells</td>
<td>• high band communication and freq. alternative</td>
<td>• high performance com</td>
</tr>
<tr>
<td>Deep Space Transponder</td>
<td>• most efficient (13%), highest power (2.6 W), space qualified</td>
<td>• autonomous operations, event detection</td>
<td>• small & low mass communication</td>
</tr>
<tr>
<td>Remote Agent Experiment</td>
<td>• 3 times mass reduction and single unit architecture</td>
<td>• autonomous operation</td>
<td>• autonomous operations, uncertainty handling</td>
</tr>
<tr>
<td>Beacon Monitor Operations</td>
<td>• provide faster response to in-flight situation (<1min vs. 3 days); reduce mission dev. cost</td>
<td>• autonomous operation</td>
<td>• autonomous operation</td>
</tr>
<tr>
<td>Autonomous navigation</td>
<td>• reduces the loading on an already over constrained DSN</td>
<td>• small camera/spectrometer</td>
<td>• deep space navigation</td>
</tr>
<tr>
<td>Miniature Imaging Camera Spectrometer</td>
<td>• achieves large reduction in ops. staffing; reduces the loading on an already over constrained DSN</td>
<td>• small camera/spectrometer</td>
<td>• small camera/spectrometer</td>
</tr>
<tr>
<td>Miniature Ion and Electron Spectrometer</td>
<td>• greatly reduce tracking, save nav. staff by a factor of 2-3, & enhance mission science</td>
<td>• small camera/spectrometer</td>
<td>• small camera/spectrometer</td>
</tr>
<tr>
<td>Low Power Electronics Experiment</td>
<td>• SiC structure and optics will allow for alignment and focus of optics at ambient temp with no change for operation at cryogenic temps</td>
<td>• characterize the solar wind & ions, & magnetosphere</td>
<td>• detection of ions & electrons</td>
</tr>
<tr>
<td>Power Actuation and Switching Module</td>
<td>• 3x reduction in mass, volume, & telemetry over SOA</td>
<td>• instrument & spacecraft functions</td>
<td>• micro/nano spacecraft</td>
</tr>
<tr>
<td>Multi-Functional Structures</td>
<td>• 30x power reduction relative to current SOA ASICS</td>
<td>• instrument & spacecraft functions</td>
<td>• instrument & spacecraft functions</td>
</tr>
<tr>
<td></td>
<td>• 1/4 the weight and 1/10 the power relative to current SOA</td>
<td>• instrument & spacecraft</td>
<td>• instrument & spacecraft</td>
</tr>
<tr>
<td></td>
<td>• 5-10x reduction in mass and volume; offers the flex architecture to interconnect MCMs, MEMS sensors, and power subsystem</td>
<td>• instrument & spacecraft</td>
<td>• instrument & spacecraft</td>
</tr>
</tbody>
</table>
Earth Observer 1
Validation of 9 Breakthrough Technologies

X-Band Phased Array Antenna:
Boeing, GSFC & Lewis Research Center

Leisa Atmospheric Corrector:
GSFC

Advanced Land Imager:
MIT Lincoln Lab, GSFC, Raytheon / Santa Barbara Remote Sensing, & Sensor Systems Group

Carbon-Carbon Radiator:
Air Force Research Lab, Amoco Polymers, BF Goodrich, GSFC, Langley Research Center, Lockheed Martin, Naval Surface Warfare Center, & TRW

Spacecraft:
GSFC, Litton, SWALES

Hyperion:
GSFC, & TRW

Wideband Advanced Recorder Processor:
GSFC, Litton, MIT Lincoln Lab, Swales, & TRW

Pulsed Plasma Thruster:
GSFC, Lewis Research Center & PRIMEX

Lightweight Flexible Solar Array:
GSFC, Lockheed Martin, & Phillips Lab

Enhanced Formation Flying
GSFC, JPL
Earth Observer One

Technologies & Applications

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
<th>Potential Earth Science Application/Benefit</th>
<th>Potential Space Science Application/Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>· Hyperspectral/Multispectral imaging spectrometer</td>
<td>· multi-spectral (10 bands), high spatial resolution (30m) in the visible and near infrared spectral range with the goal of 5% absolute radiometric accuracy</td>
<td>· precursor for the Landsat instrument</td>
<td>· applicable to space science multi-spectral remote sensing</td>
</tr>
<tr>
<td>· Hyperion instrument with advanced E-Beam Gratings</td>
<td>· E-beam lithography produces high efficiency convex gratings at very low cost</td>
<td>· possible replacement for multi-spectral (Landsat) imaging</td>
<td>· applicable to space science multi-spectral remote sensing</td>
</tr>
<tr>
<td>· Atmospheric Corrector</td>
<td>· low cost, bolt on instrument provides correction of land imaged data for atm absorption. Improves accuracy of land imaging product</td>
<td>· future Earth imaging missions (e.g. RESOURCE 21) is considering this tech.</td>
<td>· provide multi-spectral capability for deep space</td>
</tr>
<tr>
<td>· X-band Phased Array Low Cost Antenna Demo</td>
<td>· provides high gain downlinks while reducing the need for a mechanical gimbals</td>
<td>· baselined by future Earth science missions including EOS missions</td>
<td>· applicable to space science missions requiring X-band communication</td>
</tr>
<tr>
<td>· Enhanced Formation Flying</td>
<td>· synchronous science measurements on multiple spacecraft, weather & land-imaging collection 8-16 times faster than current Landsat or TIROS</td>
<td>· highly probable for use by EOS, Magnetospheric Multi-scale & Mag. Constellation missions</td>
<td></td>
</tr>
<tr>
<td>· Carbon-Carbon Radiator</td>
<td>· 30-50% mass savings w. thermal conductivity 10-500 W/m-K</td>
<td>· being considered by SBIRS, lo & hi</td>
<td>· applicable to Solar Probe, Space Time- Midex</td>
</tr>
<tr>
<td>· Lightweight Solar Array (LSA)</td>
<td>· ≥100W/kg array, low storage volume, jitter free shockless deployment</td>
<td>· being considered by SBIR lo & hi, Nat Polar-Orbiting Operational Env. Sat.</td>
<td>· being considered by NGST, STS & other OSS missions</td>
</tr>
<tr>
<td>· Pulsed Plasma Thrusters (PPT)</td>
<td>· high specific impulse (900-1200 sec), very low impulse bits (10-1000uN-s) at low average power (<1 to 100W).</td>
<td>· being considered by Constellation X</td>
<td>· cited by Midex and SMEX proposals</td>
</tr>
<tr>
<td>· Wideband Advanced Recorder/Processor</td>
<td>· > 40GBits of storage, data throughout is 5.5x that of Landsat 7. It is</td>
<td>· applicable to Earth science missions with high data rate requirements</td>
<td>· applicable to space science missions with high data rate requirements</td>
</tr>
</tbody>
</table>
Common Benefits of Processes

- Enhanced NASA’s technology community through partnerships
 - Industry
 - Academia
 - Government Laboratories
- Infusions into future missions
 - Future projects using NMP validated technologies
 - Technology database for PI missions
 - New capabilities enable new opportunities
 - MIDEX/SMEX/Discovery/ESSP
Enhanced NASA’s Technology Community through Partnerships (NMP Flight Team & Technology Partners)
Solar Electric Propulsion Future Users

Space Science

Benefits of Solar Electric Propulsion
- Transportation
- Formation Flying
- Station Keeping/Orbit Maintenance

Earth Science

- NSTAR Ion Propulsion
- Pulsed Plasma Thruster
- EOI
- ESSP
Hyper/Multi-Spectral Imagers & Spectrometers Future Users

Earth Science
- Potential replacement for multi-spectral Landsat imaging
- Hyper-spectral imager/spectrometer provides new observation capabilities

- Planetary & solar plasma scientists have proposed to use copies of the PEPE instrument for future missions
- Validation of an all SiC optical instrument covering the FUV to SWIR will enable many new miniature, low-mass cameras and spectrometers

Space Science
- MICAS camera design will be proposed for Pluto Flyby mission
Thinking Spacecraft Future Users

Earth Science

- Formation flying and/or autonomous operations for EOS and ESSP Missions
- Magnetospheric Multiscale, Magnetospheric Constellation
- Self monitoring for Europa Orbiter, MIDEX proposals & Earth orbiters

Space Science

- Autonomous optical navigation for Stardust, and Europa Orbiter
- Automatic sequencing & real time control for interferometer instruments such as TPF and LISA
Micro-Nano Spacecraft's Future Users

- Multifunctional structure
- Carbon-carbon radiator
- Wideband Advanced Recorder/Processor
- DS1
- Advanced Micro Controller
- Small Deep Space Transponder
- DS1
- Low Power Electronics
- Power switching module

Innovations that simplify design, fabrication, reduces mass & reduce resource requirements

Earth Science
- Potential for EOS Follow-On
- ESSP

Space Science
- Mars Micro missions
- STP Magnetospheric Multiscale Mission
- Discovery
- UNEX/SMEX/MIDEX
High Data Rate Future Users

Space Science
- Reduces mass, volume & mechanical complexity for high data rate missions
- Essential for high-bandwidth spectral imaging instrument and active instruments (radars/lidars)

Earth Science
Technology database for PI missions
- Advanced Land Imager

New capabilities enable new opportunities
MIDEX/SMEX/Discovery/ESSP

<table>
<thead>
<tr>
<th>Technology Readiness Database for Discovery 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>System or Subsystem</td>
</tr>
<tr>
<td>Advanced Land Imager</td>
</tr>
<tr>
<td>Technology Name and Supporting UPN or other funding source</td>
</tr>
<tr>
<td>NMP EO-1</td>
</tr>
<tr>
<td>UPN: 246</td>
</tr>
<tr>
<td>URL for Additional Information:</td>
</tr>
<tr>
<td>http://eo1.gsfc.nasa.gov/</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Description of Technology:
The Advanced Land Imager (ALI) is the centerpiece of the New Millennium, Earth Orbiter-1 mission's and will validate technologies contributing to the reduction in cost of future land imaging missions such as the Landsat series or earth imaging missions. The ALI will provide multi-spectral (10 bands), high spatial resolution (30km) in the visible and near infrared spectral range (.5 to 2.5 μm) with a goal of 5% absolute radiometric accuracy. The EO-1 mission will fly in formation with Landsat 7 and collect more than 200 common scenes for comparison.

The ALI will be a factor of 4 less in mass and 5 less in power than the Landsat 7 Enhanced Thematic Mapper (ETM+). The flight validation of key ALI technologies should lead to dramatically reduced cost and complex Landsat type missions. Some of the key technologies are:

1. Silicon Carbide Optics which are extremely lightweight optics that are stable over a wide range of temperatures. The goal is to demonstrate how well the Silicon Carbide maintain stable performance in a space environment.

2. Wide field, high resolution reflective optics which provides a full Landsat scene swath width (185km) and resolution using a simple push broom design. This technique will enable much lower cost instrumentation for future Landsat mission through use of non-mechanical scanning and reduced instrument complexity.

3. Multi-spectral imaging capability, the modular focal plane assembly provides substantial mass and power savings over comparable mechanical scanning instruments through innovative electro-optical design. Additionally, an innovative on-board calibration system will enable better characterization of instrument performance during observations.

Applicability
The ALI is a pathfinder to higher performance and lower cost land imaging instruments which meet the demanding Earth Science Enterprises requirements for remote sensing applications.

Benefit to Earth Science Missions
The ALI technologies reducing the mass, power, complexity and cost of future earth imaging systems for the Earth Science Program. A fully operational ALI has potential for reducing the cost and size of future Landsat type instruments by a factor of four to five.
Technology database for PI missions
- NSTAR Electric Propulsion

New capabilities enable new opportunities
MIDEX/SMEX/Discovery/ESSP

Technology Readiness Database for Discovery 1998

<table>
<thead>
<tr>
<th>System or Subsystem (from Level 2 WBS)</th>
<th>POC Name/Org: J. F. Stocky</th>
<th>Technology Name and Supporting UPN or other funding source</th>
<th>Technology Readiness Database for Discovery 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft Propulsion System</td>
<td>POC Phone: (818) 354-5358</td>
<td>NSTAR Solar Electric Propulsion UPNs: 242, 632, 839</td>
<td>URL for Additional Information:</td>
</tr>
</tbody>
</table>

Description of Technology:
NSTAR is a high-specific-impulse solar electric propulsion system for deep space primary propulsion. The NSTAR system consists of five principal elements:
1. A 30-cm ion thruster capable of processing 83 kg at power levels between 500 W and 2,500 W and providing 93 milli-N of thrust and an Isp of 3,120 lb-sec/lb, at maximum power.
2. A power processing unit (PPU) capable of providing the necessary voltages and currents required by the ion thruster from an input power source providing between 80 V and 160 V. Each power processing unit can control two ion thrusters sequentially, but not simultaneously.
3. A digital control interface unit (DCIU) that provides the command and telemetry interface with the spacecraft, which controls the power processing unit - establishing proper set points for each thruster level commanded by the spacecraft, and which controls the flow rates provided by the propellant storage and control system.
4. A propellant storage and control system (PSCS) that provides Xenon to the ion engine at the flow rates commanded by the DCIU for each thruster level.
5. A diagnostics measurement system to measure induced fields during ion thruster operation to help verify the performance of the ion propulsion system and to measure the effect of its operation on the spacecraft mass. The diagnostics system is not required for operational use of the ion propulsion system.

Applicability
The NSTAR engine is applicable to many deep space missions, and particularly valuable for missions to distant or high delta-v targets.

Benefit to Deep Space Missions
NSTAR provides significantly higher specific impulse than conventional chemical propulsion. This translates into a smaller mass of fuel required to accelerate a spacecraft to a given velocity. Missions to distant objects or trajectories requiring a large delta-v, where the fuel mass is a significant factor, a smaller fuel load at launch can mean a smaller, lower cost launch vehicle, or it can be traded for higher spacecraft velocity or a shorter cruise time to the target for a given launch vehicle capacity.

Development Status and Plans for Flight Readiness

<table>
<thead>
<tr>
<th>Technology Maturity</th>
<th>Description</th>
<th>Date (to be) Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component and/or board validation in relevant environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System/subsystem model or prototype demonstration in a relevant environment (ground or space)</td>
<td>An engineering model ion thruster, functionally identical to the flight ion thruster, was tested for 8,000 hours at full power. The flight ion thruster, PPU, and DCIU have been protolight qualified.</td>
<td>Completed</td>
</tr>
</tbody>
</table>

System prototype demonstration in a space environment

Actual system completed and "flight qualified" through test and demonstration (ground or space)
The flight ion thruster, PPU, DCIU, and Xenon feed system have been environmentally and functionally qualified to protolight levels prior to use on DS1.
A long-duration test with flight hardware processing 125 lbm of Xenon and using the full throttle range of the system
Completed
Dec. 2000

Actual system "flight proven" through successful mission operations
Complete mission profile as primary propulsion system for DS1
Dec. 2000
Technology database for PI missions
- Advanced Micro Controller

New capabilities enable new opportunities
MIDEX/SMEX/Discovery/ESSP

Technology Readiness Database for Discovery 1998

<table>
<thead>
<tr>
<th>System or Subsystem (from Level 2 WBS)</th>
<th>POC Name/Org: Frank Delaetghanis/JPL and Jim Lyon / Air Force Research Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Micro Controller (AMC)</td>
<td>POC E-mail: frdela@jpl.nasa.gov</td>
</tr>
<tr>
<td>Technology Name and Supporting UPN or other funding source</td>
<td>URL for Additional Information: http://prs-plh.aff.mil/AMPI/IMRG2525.html</td>
</tr>
</tbody>
</table>

Description of Technology
The Advanced Microcontroller (AMC) is the world’s smallest space-qualified self-contained computer with analog interface capability. It was designed for high-impact, cold-temperature applications on the Martian surface (30,000 G’s, -120 deg C). The AMC has modest amounts of computing power (about the equivalent of an old Apple II computer), but achieves this in the size of a postage stamp (0.8” x 1.2”), the mass of a few potato chips (3 grams), and 1/10th watt of electrical power. Unlike an Apple II, the AMC packs an impressive built-in instrumentation capability: six serial communications ports, 32 digital discrete lines, an additional 32 analog input lines, and eight presettable analog outputs. The AMC runs off of its own internal clocks (either 10 MHz or 200 Hz for ultra-low-power) or an externally provided time reference. Perhaps one of the most intriguing features of the AMC is its reconfigurable programming.

Unlike many other computers, the AMC can be reprogrammed up until final integration, under electrical control: no de-integration is required. This versatility can save many thousands of dollars in any application. The AMC can also “save” data in its non-volatile memory, giving the AMC enough “smarts” to finish a task when interrupted by power removal, which is expected to occur at several points during the Deep Space I1 mission.

Applicability
Potential to support numerous applications where modest amounts of processing are required in dimensionally-constrained and/or remote locations for a minimal size, weight, and power consumption. Such applications include motor controllers, cryocooler refrigerator controllers, distributed health and status monitoring systems, configuration management processors, safety interlock protocol management, security systems, miniature weapons computers, space probe central control processors, beacon processors, jet engine control. Will be useful in large satellite and high-performance systems as well, since those systems also have needs for lower tier processing, which can be offloaded to one or more AMC units. Benefit to Deep Space Missions

Extremely high function-to-power, measured not just in the raw processor performance but in the degree of functionality accommodated. A single AMC can monitor and control a large variety of signals in low-level instrumentation. Multiple units can be employed with less size, weight, and power penalty than a single copy of any other system in its class. It can operate with extreme cold, radiation, and shock, and new versions can be quickly developed with much higher radiation tolerance.

Development Status and Plans for Flight Readiness

<table>
<thead>
<tr>
<th>Technology Maturity</th>
<th>Description</th>
<th>Date (to be) Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component and/or board validation in relevant environment</td>
<td>Prototyped breadboards and MCMs tested to -130 deg C, drop shock tests</td>
<td>Boards have operated since July 1997; MCMs since Feb 97; drop shocks planned for mid-1998</td>
</tr>
<tr>
<td>System/subsystem model or prototype demonstration in a relevant environment (ground or space)</td>
<td>Prototyped breadboards and MCMs tested to -130 deg C, drop shock tests</td>
<td>Boards have operated since July 1997; MCMs since Feb 97; drop shocks planned for mid-1998</td>
</tr>
<tr>
<td>System prototype demonstration in a space environment</td>
<td>In Deep Space II and Space Test Research Vehicle 1D; Analog portions in X2000</td>
<td>Both missions in 1999; DS1 is interplanetary; STRV is harsh radiation environment</td>
</tr>
<tr>
<td>Actual system completed and “flight qualified” through test and demonstration (ground or space)</td>
<td>MCM form only</td>
<td>Qualification summer 1998</td>
</tr>
<tr>
<td>Actual system “flight proven” through successful mission operations</td>
<td>After launch will be tested in STRVI-D and operated in DS2. Other space missions are evaluating AMC for use.</td>
<td>mid-1999 for STRVI-D and late 1999 for DS2</td>
</tr>
</tbody>
</table>

Advanced Micro Controller
NMP Technology Covers Wide Spectrum of Opportunities

<table>
<thead>
<tr>
<th>Cross-Enterprise Technology Program Thrust Areas</th>
<th>Current NMP Validation Contributions (DS1,2 & EO1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Vibrant Validation Flight Schedule

<table>
<thead>
<tr>
<th>FY</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1</td>
<td></td>
<td></td>
<td></td>
<td>01/99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS2</td>
<td></td>
<td></td>
<td></td>
<td>01/99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO1</td>
<td>10/98</td>
<td>12/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO2</td>
<td></td>
<td></td>
<td></td>
<td>03/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST3 target launch window</td>
<td>09/03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST4 target launch date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04/03</td>
</tr>
<tr>
<td>Potential Small ST5 mission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential EO3 / EO4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continuous Improvement to Meet Changing Enterprises Needs
- Flight Validation Technology Inventory
- Process Improvements
- Smaller & More Frequent Flights