Effects of aircraft on aerosol abundance in the upper troposphere

G.V.Ferry¹, R.F.Pueschel¹, A.W.Strawa¹, S.D.Howard², S.Verma³, M.J.Mahoney⁴, P.Bui¹, J.R.Hannan⁵, H.E.Fuelberg⁵

Abstract. A significant increase in sulfuric acid aerosol concentration was detected above 10 km pressure altitude during a cross-corridor flight out of Shannon, Ireland, on October 23, 1997. The source of this aerosol is ascribed to commercial aircraft operations in flight corridors above 10 km, because (1) a stable atmosphere prevented vertical air mass exchanges and thus eliminated surface sources, (2) air mass back trajectories documented the absence of remote continental sources, and (3) temperature profiler data showed the tropopause several kilometers above the flight altitude throughout the flight. Particle volatility identified 70% H₂SO₄, 20% (NH₄)₂SO₄ and 10% nonvolatile aerosol in the proximity of flight corridors, and (10-30)% H₂SO₄, up to 50% (NH₄)₂SO₄, and (40-60)% nonvolatile aerosols in air that was not affected by aircraft operations below 10 km. Only a very small fraction of the non-volatile particles (determined with a condensation nucleus counter) could be morphologically identified as soot aerosol (validated by scanning electron microscopy of wire impactor samples). The newly formed H₂SO₄ particles did not measurably affect surface area and volume of the background aerosol due to their small size, hence did not affect radiative transfer directly.

Introduction

Aircraft jet engines directly emit aerosols and condensible gases, such as water vapor (H₂O) and sulfur dioxide (SO₂) which lead to the formation of new liquid (volatile) sulfuric acid (H₂SO₄) particles in the early plume by gas-to-particle conversion (nucleation) processes. Soot aerosol formed during incomplete fuel combustion constitute part of the nonvolatile particle fraction. The newly formed particles grow by condensation and coagulation amongst themselves and with the background aerosol.

¹ NASA Ames Research Center, Moffett Field, CA
² Symtech Corporation, Arlington, VA
³ Science and Technology Corporation, Lantham, MD
⁴ Jet Propulsion Laboratory, Pasadena, CA
⁵ Florida State University, Tallahassee, FL
Aviation-produced particles may influence the state of the atmosphere in various ways. For example, they provide surfaces for heterogeneous chemical reactions. Heterogeneous reaction rates depend on the chemical characteristics of aerosols. For example, the reaction probabilities of N₂O₅ on NH₄HSO₄ show a strong dependence on relative humidity and temperature, decreasing with lowering relative humidity and increasing temperature (Mozurkewich and Calvert, 1988). In contrast, measurements of N₂O₅ hydrolysis on H₂SO₄ particles show only a weak dependence on temperature and relative humidity (Hanson and Ravishankara, 1991). Therefore, it is important to determine the enhancement of H₂SO₄ aerosol by aircraft in relation to the fraction of those particles that are neutralized to (NH₄)₂SO₄ in order to assess the atmospheric chemical modification potential of aircraft-produced aerosol. Aviation-generated aerosols also form a sink for condensing gases, they absorb or scatter radiation directly, and they change cloud properties which may affect radiation indirectly. In order to assess those effects, aviation-produced aerosol characteristics have to be determined in relation to background aerosol properties.

A stable atmosphere on 23 October 1997 separated air masses containing flight corridors above 10 km from air masses below 10 km that were not affected by air traffic. Temperature profiler data determined a height of the tropopause that was above DC-8 flight levels by at least 1 km throughout the flight. Furthermore, air mass back trajectories established the absence of long range transport of pollutants from the North American continent. Thus, SONEX Flight Nr. 7 on that day provided an opportunity to determine aerosol characteristics in both aircraft-affected and non-affected air masses in the upper troposphere.

In this paper we document that subsonic aircraft emissions below the tropopause at northern mid-latitudes are a significant source of sulfuric acid aerosol. The particles are too small, however, to measurably affect surface area and volume densities. Nevertheless, aircraft emissions injected in flight corridors at 9- to 12-km altitudes are more important than similar surface emissions because of longer residence times in the upper troposphere, even though aircraft emit far less aerosols than are emitted and produced at the earth’s surface.

Results

Both the Ames MMS (Meteorological Measuring System) and the Jet Propulsion Laboratory MTP (Microwave Temperature Profiler) established the existence of a sub-adiabatic lapse rate during a cross-corridor flight out of Shannon on 23 October 1997. MTP data show that the lapse rate varied between -6.5 and -7.5 °C/km (against a -9.9 °C/km dry adiabatic lapse rate) during the entire flight. This atmospheric stability prevented vertical air mass exchange. Furthermore, a slight temperature inversion,
shown in both the MMS and MTP data, separated air masses above 10 km from those below that altitude.

The Florida State University (FSU) air mass back trajectory model showed the confinement of air masses within 25 degrees latitude over the Atlantic Ocean upwind of the flight track both above and below 10 km pressure altitude for 5 days prior to 23 October. This absence of long-range transport prevented advection of pollutants from North America and permitted accumulation of aircraft emissions in the proximity of corridors upwind of the sampling aircraft.

The inhibited transport of aerosols from both the Atlantic Ocean’s boundary layer and the North American continent left aircraft flying in corridors above 10 km as the most likely source of particulate pollutants along the flight track.

Figure 1 shows in the upper panel the ambient fine particle (CN) concentration, and in the lower panel the fraction of particles that remain at 120C, 200C, and 300C, respectively, for all of the flight as function of UTC time. CN particles were detected by growing particles > 0.01 μm at 400% supersaturation in the cloud chamber of a TSI Model 2000 CN counter to optically detectable sizes. A heater upstream of the CN counter permitted differential heating of the air up to 300C prior to entering the cloud chamber. Noticeable in Fig.1 is a significant increase in fine particle abundance at 28,800 sec UTC when the aircraft ascended through 10 km pressure altitude, and a corresponding decrease at 40,500 sec UTC while passing through 10 km pressure altitude during descent. This change in fine particle concentration stands out in spite of fairly large fluctuations in fine-particle abundance at any altitude. Simultaneous gas measurements by other investigators yielded 40 ppbv O3 and 60-70 ppbv CO, both indicative of tropospheric air. While both O3 and CO were fairly constant throughout the flight, NOy was enhanced above 10 km similar to the increase in CN. The simultaneous existence at 10 km of a weak temperature inversion warrants the assumption that the elevated fine-particle concentration above 10 km pressure altitude is related to aircraft operations in flight corridors above FL330.

Figure 2 shows the fraction of particles remaining at 120C, 200C and 300C temperatures in relation to the thermal volatility spectra (Clarke. 1991) of H2SO4 (curve dropping off near 120C) and (NH4)2SO4 (curve dropping off near 240C). Table 1 summarizes those results.

Table 1: Concentration and thermal characteristics of CN below and above 10 km pressure altitude Z.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Ambient</th>
<th>120</th>
<th>200</th>
<th>300</th>
<th>Ambient</th>
<th>120</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN(cm⁻³)</td>
<td>792±255</td>
<td>543±111</td>
<td>392±81</td>
<td>292±92</td>
<td>1653±39</td>
<td>444±120</td>
<td>348±168</td>
<td>243±143</td>
</tr>
</tbody>
</table>
Table 1: Concentration and thermal characteristics of CN below and above 10 km pressure altitude Z.
% lost 0 31±10 50±19 63±17 0 73±10 79±11 86±9

It follows from Table 1 that the average fine-particle abundance above 10 km pressure altitude was more than double the concentration below 10 km. It further follows from Fig. 2 and Table 1 that 73% by number of fine particles in the air mass above 10 km near commercial flight corridors consisted of sulfuric acid, while 14% could be classified as "non-volatile" aerosols (defined as those that exist at 300°C) and 13% showed thermal characteristics that were typical of (NH₄)₂SO₄. In contrast, below 10 km, only 31% of the aerosol showed volatility that is typical of sulfuric acid, 37% resembled nonvolatile aerosols, and 32% were (NH₄)₂SO₄-like. Thus, the sulfuric acid aerosol abundance above 10 km was enhanced in proportion to total aerosol enhancement above the concentration below 10 km. Therefore, the doubling of fine particle concentration above 10 km is due exclusively to sulfuric acid aerosol that has been emitted into that air mass by aircraft.

The aerosol characteristic that determines both heterogeneous reaction rates and light scattering properties is the particle surface area density. CN measurements alone do not permit a determination of particle surface area, because they constitute a bulk particle density without significant information on particle size. The only information about particle size that is available from CN measurements is a detectable minimum size which depends on the supersaturation at which CN counters are being operated.

We determined particle number, surface area and volumes independently from CN measurements by collecting particles by impaction on wires. This sampling technique (e.g., Pueschel et al., 1992) by inertial impaction is fundamentally different from CN measurements. The collection efficiency of particles on wires at nominal jet aircraft speeds drops off rapidly at 0.05 μm particle diameter (Lem and Farlow, 1979). Impactor sampling has a distinctive advantage over other techniques, however, by allowing morphological and chemical analysis of those particles that were collected, thereby offering the capability of a distinction between soot and other particles (Pueschel et al., 1992).

Figure 3 shows particle size distributions from samples collected on 23 October below and above 10 km pressure altitude. Least square curve fits to the data yield log-normal characteristics N₀₁ ż 4.0 cm⁻³, r₀₁ = 0.09 μm and σ₁ = 1.8 for the lower, and N₀₂ ż 40 cm⁻³, r₀₂ = 0.02 μm and σ₂ = 2.0 for the higher altitude, respectively. From those log-normal parameters follow particle surface area densities A₁ = 0.81 μm² cm⁻³ and A₂ = 0.60 μm² cm⁻³ and particle volume densities V₁ = 0.057 μm³ cm⁻³ and V₂ = 0.014 μm³ cm⁻³ for below and above 10 km pressure altitude, respectively. The importance of this result is the fact that aircraft operations enhance neither particle surface area nor particle volume of aerosol larger than 0.05 μm radius, in spite of a significant increase of fine-particle concentration.
Particle concentration, surface area and volume densities have been derived independently from log-normal curve fits by integrations over number (shown in Fig. 3), surface area and volume size distributions. The results are shown in Table 2.

Table 2: Particle number, surface area and volume densities above and below 10 km pressure altitude.

<table>
<thead>
<tr>
<th>Z (km)</th>
<th>(< 10\text{ km})</th>
<th>(> 10\text{ km})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{N (cm}^{-3})</td>
<td>(4.6 \pm 0.3)</td>
<td>((1.9 \pm 1.0) \times 10^{-1})</td>
</tr>
<tr>
<td>(A (\mu\text{m}^2 \text{ cm}^{-3})</td>
<td>((7.7 \pm 0.9) \times 10^{-1})</td>
<td>((3.7 \pm 1.9) \times 10^{-2})</td>
</tr>
<tr>
<td>(V (\mu\text{m}^3 \text{ cm}^{-3})</td>
<td>((4.8 \pm 0.9) \times 10^{-2})</td>
<td>((2.3 \pm 1.1) \times 10^{-4})</td>
</tr>
</tbody>
</table>

The differences between results from the log-normal curve fits and those derived by numerical integration lie within experimental error. Both data sets show that particle concentration is the only aerosol characteristic that is significantly enhanced in air masses that are affected by aircraft operations, whereas surface area and volume densities are not. Fig. 3 indicates that those aircraft-produced particles are smaller than 0.1 \(\mu\text{m}\) diameter. A comparison of the results of Fig. 3 with those of Fig. 2 suggests that the majority of those particles are smaller than 0.05 \(\mu\text{m}\). It is this small size that renders aircraft-generated sulfuric acid particles meaningless for either aerosol surface area or volume. Their coagulation with other aerosols, however, may affect the surface characteristics of those aerosol particles by (partially) coating them with sulfuric acid. Thus it is possible that particles that are initially hydrophobic, such as soot, are converted to effective cloud condensation nuclei to potentially cause indirect effects.

The Ames Wire Impactor samples were also analyzed for soot aerosol which is identified morphologically by the fractal nature of soot particles, thereby distinguishing them uniquely from other aerosols. Those results are also shown in Table 2. From this data it follows that, in contrast to a significant effect on the sulfuric acid fine-particle abundance, aircraft leave no measurable imprint on the soot aerosol characteristics. Of particular note is the fact that the morphologically determined soot aerosol comprises a mere few percent of the total aerosol. In contrast, the non-volatile aerosol fraction identified by preheating air prior to entering a CN counter (Fig. 1 and Table 1) amounts to up to 13%. In order to resolve this discrepancy, one has to assume that either CN counters detect refractory aerosols other than soot, including only partially evaporated \((\text{NH}_4)_2\text{SO}_4\) and/or chemions, or that the majority of soot particles are too small (<0.05 \(\mu\text{m}\)) to efficiently be collected by inertial impingement on wire impactors. The latter assumption is doubtful, because electron-microscopic analysis of soot fractals shows that individual soot spherules are large enough to be collected by wire impactors.

Summary

A sub-adiabatic lapse rate, amplified by several inversion layers at various altitudes, prevented vertical exchange of air.
masses during a cross-corridor flight out of Shannon on 23 October 1997. Air mass back trajectories showed that air parcels reaching the aircraft had been over the Atlantic Ocean for at least 5 days prior to sampling. In spite of this inhibited vertical and horizontal transport, a drastic up to tenfold enhancement of fine particle concentration was detected above 10 km pressure altitude in relation to concentrations at lower altitudes. Thus aircraft operated in flight corridors above 10 km were the most likely source of this fine-particle abundance.

Volatility measurements identified sulfuric acid as the compound of the aircraft-generated aerosol, raising the sulfuric acid fraction of the total aerosol to >70%. The rest was equally divided between (NH$_4$)$_2$SO$_4$ and a non-volatile component, a small fraction of which was soot aerosol. In contrast, sulfuric acid amounted to only 25% in the air mass below 10 km pressure altitude which was not affected by aircraft.

Ames wire impactor samples, collected concurrently with the fine particle measurements, showed that only particle number density was influenced by aircraft. Neither particle surface area nor volume densities were affected because of the small size (<0.05 μm) of the aircraft-generated particles. Thus, a direct radiative effect of aircraft-produced aerosol is not to be expected. However, coagulation with the aircraft-generated sulfuric particles could render hydrophobic aerosols, such as soot, to become cloud condensation nuclei and thereby constitute an indirect effect.

From the impactor samples we could morphologically identify the fraction of the aerosol that was soot particles. Soot contributed only 4% and 0.2% by number, respectively, to the aerosol below and above 10 km pressure altitude. Thus, in contrast to sulfuric acid fine particles, aircraft have no measurable effect on soot aerosol concentration. Soot particles, however, are subject to radiometric forces due to their high absorptivity of sunlight and asymmetric shape (Pueschel et al., 1999). As a consequence, their atmospheric residence time is longer than that of other aerosols and they can be transported against gravity up to 80 kilometers, where they might affect mesospheric physics.

There exists a discrepancy between a non-volatile aerosol component determined by CN counters and soot aerosol identified morphologically by impactor samples. To resolve this discrepancy one has to assume that either the CN counter-determined non-volatile aerosol is composed of more refractory compounds than only soot, for example of only partially evaporated ammonium sulfate, sea salt or mineral particles, or that the majority of soot particles that are detected by CN counters are too small to be collected efficiently by wire impactors. Because the supersaturations in CN counters are extremely high, the possibility exists that they possibly count chemions which are generated in aircraft jet engines (Yu and Turco, 1997). We, therefore, caution against an unqualified interpretation of non-volatile CNs as soot particles.
Acknowledgments. We thank Duane Allen for engineering and operation of the airborne aerosol measurement system. The MTP work performed by M.J. Mahoney was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The research was supported by NASA’s Atmospheric Effects of Aviation Project/Subsonic Assessment.

References.

Figure 1. Upper panel: Ambient CN particle concentration. Lower panel: Fractions of particles remaining at 120°C (diamonds), 200°C (triangles) and 300°C (squares). Abscissa in both panels is flight time in UTC seconds. Date is 23 October 1997.

Figure 2. Thermal decomposition spectra of sulfuric acid (squares) and ammonium sulfate (circles). The diamonds and triangles are averages of measurements below 10 km and above 10 km pressure altitude, respectively on 23 October 1997.

Figure 3. Particle size distributions measured above 10 km at 8:59-9:01 UTC (open circles) and below 10 km at 7:09-7:12 UTC (solid circles) pressure altitudes on 23 October 1997.

FERRY ET AL.: EFFECT OF AIRCRAFT ON AEROSOL ABUNDANCE
FERRY ET AL.: EFFECT OF AIRCRAFT ON AEROSOL ABUNDANCE
FERRY ET AL.: EFFECT OF AIRCRAFT ON AEROSOL ABUNDANCE

Paul Bui, Guy V. Ferry, R.F. Pueschel, and A.W. Strawa, NASA Ames Research Center, MS SGP:245-4, Moffett Field, CA 94035-1000.
H.E. Fuelberg and J.R. Hannan, Florida State University, Tallahassee, FL 32306-4520.
S.D. Howard, Synotech Corporation, Arlington, VA.
M.J. Mahoney, Jet Propulsion Laboratory, MS 246-101, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099.
AWI Sulfate Size Distribution

- 971023.4-AA39(75μ)
 7:09-7:12; 28964 ft

- 971023.5-AA40(75μ)
 8:59-9:01; 34941 ft